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Abstract

This paper introduces a model with regime switching, which is driven by an
autoregressive latent factor correlated with the innovation to the observed time
series. In our model, the mean or volatility process is switched between two
regimes, depending upon whether the underlying autoregressive latent factor
takes values above or below some threshold level. If the latent factor becomes
exogenous, our model reduces to the conventional markov switching model, and
therefore, our model may be regarded as an extended markov switching model
allowing for endogeneity in regime switching. Our model is estimated by the
maximum likelihood method using a newly developed modified markov switching
filter. For both mean and volatility models that are frequently analyzed in
markov switching framework, we demonstrate that the presence of endogeneity
in regime switching is indeed strong and ubiquitous.
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1 Introduction

Regime switching models have been used extensively. In most of these models, two regimes,

designated as high and low states of an economy, are introduced with a state process de-

termining one of the regimes to take place in each period. The bi-valued state process is

typically modeled as a markov chain. The autoregressive model with this type of markov

switching in the mean was first considered by Hamilton (1989), which was further ana-

lyzed in Kim (1994). Subsequently, the markov switching has been introduced in more

general class of models such as regression models and volatility models by numerous au-

thors. Moreover, various statistical properties of the model have been studied by Hansen

(1992), Hamilton (1996), Garcia (1998), Timmermann (2000) and Cho and White (2007),

among others. For a nice overview and some extensions of the related literature, the reader

is referred to the monograph by Kim and Nelson (1999). Markov-switching models with

endogenous explanatory variables have also been considered recently by Kim (2004, 2009).

Though the markov switching models have been used and proven to be quite useful in

a wide range of contexts, they have some drawbacks. Most importantly, with a very few

exceptions including Diebold et al. (1994) and Kim et al. (2008),1 they all assume that

the markov chain choosing the state of regime is completely independent from all other

parts of the model, which is extremely unrealistic in many cases.2 Note that the exogenous

regime switching implies in particular that the future transition between states is completely

determined by the current state, and does not rely on the realizations of underlying time

series. This is highly unlikely in many practical applications. Instead, we normally expect

that the future transition depends critically on the realizations of underlying time series as

well as the current and possibly past states. Furthermore, the markov chain determining

the state of regime in virtually all of the existing switching models is assumed to be strictly

stationary, and cannot accommodate the nonstationarity in the transition probability. This

can be restrictive if the transition is strongly persistent.

In this paper, we propose a novel approach to modeling regime switching. In our ap-

proach, the mean or volatility process is switched between two regimes, depending upon

whether the underlying autoregressive latent factor takes values above or below some thresh-

old level. The latent factor, on the other hand, is assumed to be correlated with the previous

1Diebold et al. (1994) differs from our approach in that they consider a markov-switching driven by a set
of observed variables. We discuss Kim et al. (2008) in more detail later. See also Kalliovirta et al. (2015)
for a related approach.

2This is true only for the markov switching models analyzed by the classical approach. In the literature
on Bayesian regime switching models, there are several works, including Chib (1996), Chib and Dueker
(2004) and Bazzi et al. (2014), which allow for endogenous markov chains. See also Kang (2014), which
extends Kim et al. (2008) to a general state space model using a Bayesian approach.
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innovation in the model. A current shock to the observed time series therefore affects the

regime switching in the next period. Moreover, we allow the autoregressive latent factor to

have a unit root and accommodate a strongly persistent regime change. Consequently, our

approach remedies both of the aforementioned shortcomings in the conventional markov

switching model, and yields a broad class of models with endogenous and possibly non-

stationary regime changes. Moreover, it also provides an extracted autoregressive latent

factor, which can be used to investigate the dynamic interactions of the mean or volatility

process of a given time series with the levels of other observed time series. Our model can

be estimated by a modified markov switching filter that we develop in the paper.

If the autoregressive latent factor is exogenous, our model reduces to the conventional

markov switching model. Indeed, we show in this case that the conventional two state

markov switching model specified by two transition probabilities has the exact one-to-one

correspondence with our model specified by the autoregressive coefficient of the latent factor

and the threshold level. Therefore, we may always find our model with an exogenous autore-

gressive latent factor corresponding to a conventional two state markov switching model.

They are observationally equivalent and have exactly the same likelihood. Consequently,

our model may be regarded as a natural extension of the conventional markov switching

model, with the extension made to relax some of its important restrictive features. In the

presence of endogeneity, however, our model diverges sharply from the conventional markov

switching model. In particular, we show in the paper that the state process in our model

is given by a markov process jointly with the underlying time series, and the transition of

state systematically interacts with the realizations of underlying time series.

Our paper is closely related to Kim et al. (2008), which considers a regime switching

model driven by an endogenous i.i.d. latent factor with the threshold level determined by

the previous state and possibly lagged values of the underlying time series.3 Our model

has some important advantages over their model. First, they require the state transition to

be dependent only on its immediate past, and this is in contrast with our approach which

allows for a high order markov structure.4 Second, the innovation in our model is set to be

correlated with the state variable in the next period, in contrast to their model where it is

assumed to be contemporaneously correlated with the state variable in the current period.

We believe that the endogeneity of regime switching is more appropriately structured in our

approach. In fact, the presence of contemporaneous correlation between the state variable

and the innovation of the error term makes their regression model seriously misspecified from

3In their model, as well as in our model, the threshold level is also allowed to be dependent upon other
exogenous covariates.

4This is a serious restriction. For instance, their model cannot be used directly to fit a mean switching
AR(p) model with p > 1, including the original Hamilton’s model.
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the conventional point of view.5 Finally, we may easily allow for nonstationary transition

by letting our autoregressive latent factor have a unit root, whereas their model strictly

requires stationarity in transition.

To evaluate the performance of our model and estimation procedure, we conduct an

extensive set of simulations. Our simulation results can be summarized as follows. First,

the endogeneity of regime switching, if ignored, has a significant deleterious effect on the

estimates of model parameters and transition probabilities. This is more so for the mean

model than the volatility model, and for the models with stationary latent factors relative to

the models with nonstationary latent factors. Second, the presence of endogeneity, if taken

into account properly, improves the efficiency of parameter estimates and the precision

of estimated transition probabilities. This is because the presence of endogeneity helps

to extract more information in the data on the latent states and their transitions. The

efficiency gain and the precision enhancement are substantial in some cases, particularly

when the latent factor is stationary and the endogeneity is strong. Finally, the likelihood

ratio tests for endogeneity work reasonably well in all cases we consider. Though they tend

to overreject the null hypothesis of no endogeneity for relatively small samples, they overall

appear to be very powerful. In fact, their powers increase sharply up to unity as the degree

of endogeneity increases.

For the empirical illustrations of our approach, we analyze the US GDP growth rates and

the NYSE/AMEX index returns respectively for our mean and volatility models. For both

models, the evidence for endogeneity is unambiguously strong. The estimated correlations

between the current shock to the observed time series and the latent factor determining the

state in the next period are all very significantly different from zero. For our volatility model,

the correlation is estimated to be strongly negative with the values −0.970 and −0.999 for

the two sample periods we consider. Such almost perfect negative correlation implies the

presence of strong leverage effect on stock returns. On the other hand, the correlation in

our mean model is estimated to be either strongly negative with the value −0.923 for the

earlier sample period considered in Kim and Nelson (1999) or has nearly perfect positive

correlation for the recent subsample. The negative correlation in our stationary mean

model implies that the mean reversion of the observed time series occurs in two different

levels. Not only does the observed time series revert to its state dependent mean, but

also the state dependent mean itself moves to offset the effect of a shock to the observed

time series. In the case with the perfect positive correlation in the recent sample, on the

5In their regression model, regime switching coefficients of regressors and regression errors are corre-
lated, and regression errors are serially correlated. Consequently, as they point out themselves, their state-
dependent mean and volatility no longer represent the conditional mean and volatility of the underlying
time series. They consider such a model to analyze the volatility feedback effect of equity returns.
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other hand, the movement of the state dependent mean at the second level would entail

an unstabilizing effect on the observed time series. For both mean and volatility models,

the inferred probabilities appear to be much more accurately predicting the true states of

changing regimes if we allow for endogeneity in regime switching.

The rest of the paper is organized as follows. In Section 2, we introduce our model

and compare it with the conventional markov switching model. In particular, we show

that our model becomes observationally equivalent to the conventional markov switching

model, if endogeneity is not present. Section 3 explains how to estimate our model using a

modified markov switching filter. The markov property of the state process is also discussed

in detail. Section 4 reports our simulation studies, which evaluate the performance of our

model relative to the conventional markov switching model. The empirical illustrations in

Section 5 consist of the analysis of the US GDP growth rates and the NYSE/AMEX index

returns using respectively our mean and volatility models. Section 6 concludes the paper,

and Appendix collects the proofs of theorems in the paper and additional figures.

A word on notation. We denote respectively by ϕ and Φ the density and distribution

function of standard normal distribution. The equality in distribution is written as =d.

Moreover, we use p(·) or p(·|·) as the generic notation for density or conditional density

function. Finally, N(a, b) signifies the density of normal distribution, or normal distribution

itself, with mean a and variance b. These notations and notational conventions will be used

throughout the paper without further reference.

2 A New Approach to Modeling Regime Switching

In this section, we introduce a new approach to modeling regime switching and compare it

with the approach used in the conventional markov switching model.

2.1 A New Regime Switching Model

In our model, we let a latent factor (wt) be generated as an autoregressive process

wt = αwt−1 + vt (1)

for t = 1, 2, . . ., with parameter α ∈ (−1, 1] and i.i.d. standard normal innovations (vt). We

use (πt) as a generic notation to denote a state dependent parameter taking values πt = π

or π̄, π < π̄, depending upon whether we have wt < τ or wt ≥ τ with τ being a threshold
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level, or more compactly,

πt = π(wt) = π1{wt < τ}+ π̄1{wt ≥ τ}, (2)

where τ and (π, π̄) are parameters, π : R → {π, π̄}, and 1{·} is the indicator function. In

subsequent discussions of our models, we interpret two events {wt < τ} and {wt ≥ τ} as

two regimes that are switched by the realized value of the latent factor (wt) and the level

τ of threshold, and call π the level function of state dependent parameter (πt).

To compare our model with the conventional markov switching model, we may set

st = 1{wt ≥ τ}, (3)

so that we have

πt = π(st) = π(1− st) + π̄st

exactly as in the conventional markov switching model. The state process (st) represents

low or high state depending upon whether it takes value 0 or 1. The conventional markov

switching model simply assumes that (st) is a markov chain taking value either 0 or 1,

whereas our approach introduces an autoregressive latent factor (wt) to define the state

process (st). In the conventional markov switching model, (st) is assumed to be completely

independent of the observed time series. In contrast, it will be allowed in our approach to

be endogenous, which appears to be much more realistic in a wide range of models used in

practical applications.

For identification of the level function π in (2), we need to assume that π < π̄. To

see this, note that (vt) has the same distribution as (−vt), and that our level function is

invariant with respect to the joint transformation w 7→ −w, τ 7→ −τ and (π, π̄) 7→ (π̄, π).

Recall also that, to achieve identification of our level function, we must restrict the variance

of the innovations (vt) to be unity. This is because, for any constant c > 0, (cvt) generates

(cwt) and our level function remains unchanged under the joint transformation w 7→ cw and

τ 7→ cτ in scale. If α = 1 and the latent factor (wt) becomes a random walk, we have an

additional issue of joint identification for the initial value w0 of (wt) and the threshold level

τ . In this case, we have wt = w0 +
∑t

i=1 vi for all t and the transformation w0 7→ w0 + c for

any constant c yields (wt + c) in place of (wt). However, our level function does not change

under the joint transformation w 7→ w + c and τ 7→ τ + c in location. Therefore, we set

w0 = 0 in this case. On the other hand, the identification problem of the initial value w0

of (wt) does not arise if we assume |α| < 1. Under this assumption, the latent factor (wt)
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becomes asymptotically stationary, and we set

w0 =d N

(

0,
1

1− α2

)

to make it a strictly stationary process.

We specify our model as

yt = m(xt, yt−1, . . . , yt−k, wt, . . . , wt−k) + σ(xt, wt, . . . , wt−k)ut

= m(xt, yt−1, . . . , yt−k, st, . . . , st−k) + σ(xt, st, . . . , st−k)ut (4)

with mean and volatility functions m and σ respectively, where (xt) is exogenous and (ut)

and (vt) in (1) are jointly i.i.d. as

(

ut

vt+1

)

=d N

((

0

0

)

,

(

1 ρ

ρ 1

))

(5)

with unknown parameter ρ.6 For the brevity of notation, we write

mt = m(xt, yt−1, . . . , yt−k, wt, . . . , wt−k) = m(xt, yt−1, . . . , yt−k, st, . . . , st−k) (6)

σt = σ(xt, wt, . . . , wt−k) = σ(xt, st, . . . , st−k), (7)

subsequently. Note thatmt and σt are conditional mean and volatility of the state dependent

variable (yt) given present and past values of latent factors wt, . . . , wt−k, as well as the

current values of exogenous variables xt and lagged endogenous variables yt−1, . . . , yt−k.
7

Our model (4) includes as special cases virtually all models considered in the literature.

In our simulations and empirical illustrations, we mainly consider the model

γ(L)
(

yt − µt

)

= σtut, (8)

where γ(z) = 1 − γ1z − · · · − γkz
k is a k-th order polynomial, µt = µ(wt) = µ(st) and

σt = σ(wt) = σ(st) are respectively the state dependent mean and volatility of (yt). We

may easily see that the model introduced in (8) is a special case of our general model (4).

The model describes an autoregressive process with conditional mean and volatility that

are state dependent. It is exactly the same as the conventional markov switching model

6We may equivalently define the dynamics of (wt) as wt = αwt−1 + ρut−1 +
√

1− ρ2vt, where (ut) and
(vt) are independent i.i.d. standard normals.

7The endogenous latent factor (wt) may naturally be regarded as an economic fundamental determining
the regimes of an economy.
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considered by Hamilton (1989) and many others, except that the states in our model (8)

are determined by an endogenous latent autoregressive factor (wt) and the level function π

specified as in (1) and (2), respectively. In fact, it turns out that if we set ρ = 0, together

with |α| < 1, our model in (8) becomes observationally equivalent to the conventional

markov switching model, and we may represent it as the standard regime switching model

driven by an exogenous two state markov chain. This is shown below.

The model given in (8) may therefore be viewed as an extension of the conventional

autoregressive markov switching model, which allows in particular for endogeneity and

nonstationarity in regime changes. The autoregressive parameter α of the latent factor

(wt) in (1) controls the persistency of regime changes. In particular, if α = 1, the regime

change driven by (wt) becomes nonstationary, and such a specification may be useful in

describing regime changes that are highly persistent. On the other hand, the parameter ρ

in the joint distribution (5) of the current model innovation ut and the next period shock

vt+1 to the latent factor determines the endogeneity of regime changes. As ρ approaches to

unity in modulus, the endogeneity of regime change driven by (wt) becomes stronger, i.e.,

the determination of the regime in time t+1 is more strongly influenced by the realization

of innovation (ut) at time t. We observe that ρ is significantly different from zero both in

mean and volatility models for many economic and financial time series including the GDP

growth rates and stock returns we analyze for our empirical illustrations in the paper.

The interpretation of endogeneity parameter ρ, especially its sign, is quite straightfor-

ward for our volatility model. If ρ < 0, the innovation ut in the level of yt at time t becomes

negatively correlated with the volatility σt+1 of yt+1 at time t + 1. This implies that a

negative shock to (yt) in the current period would entail an increase in volatility in the next

period. This is often referred to as the leverage effect, if (yt) is used to model returns from

a financial asset. See, e.g., Yu (2005) for more discussions on the econometric modeling of

leverage effect in volatility model for financial asset returns. Of course, ρ > 0 means that

there is an anti-leverage effect in the model.

For the mean model, the sign of ρ has a more subtle effect on the sample path of the

observed time series (yt). If the lag polynomial γ(z) satisfies the stationarity condition, (yt)

becomes stationary. In this case, (yt) reverts to its state dependent mean (µt), as well as

to its global mean Eyt. This is true for both cases of ρ < 0 and ρ > 0. The mean reverting

behavior of (yt), however, differs depending upon whether ρ < 0 or ρ > 0. If ρ < 0, a

positive realization of ut at time t increases the probability of having low regime in the

state dependent mean µt+1 of yt+1 at time t + 1, and in this sense, the state dependent

mean (µt) of the observed time series (yt) is also reverting. Therefore, the mean reversion

of (yt) takes place in two distinct levels: the reversion of (yt) to its state dependent mean
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(µt), and the movement of (µt) to offset the effect of a shock to (yt). This would not be

the case if ρ > 0. In this case, the movement of (µt) at the second level would entail an

unstabilizing effect on (yt). Furthermore, the regime switching is more likely to happen for

ρ > 0 if (yt) is between the two state dependent means, whereas it is so for ρ < 0 if (yt) is

outside of the two state dependent means. Therefore, we may expect that regime switching

becomes relatively more conspicuous if ρ < 0, compared with the case ρ > 0.

Kim et al. (2008) consider a regression model similar to ours in (4), yet they specify

the state dependent regression coefficients (βt) in their model as being dependent only on

the current state variable (st) and their model is not directly applicable for model (8) with

k ≥ 1. In their model, the state process is defined as st = 1{vt ≥ πt−1}, where (vt) is

specified simply as a sequence of i.i.d. latent random variables that is contemporaneously

correlated with innovation (ut) in regression error (σtut).
8 Though their state process (st)

is endogenous, it is strictly restricted to be first order markovian and stationary as in

the conventional markov switching model. Furthermore, in their approach, (ut) is jointly

determined with (st) for each time t. The presence of contemporaneous correlation between

(ut) and (st) entails undesirable consequences on their model: State dependent coefficients

(βt) of regressors are contemporaneously correlated with regression errors (σtut), in addition

to that regression errors (σtut) are serially correlated.9 Their regression model is therefore

seriously misspecified from the conventional point of view.

Our approach is different. In our model, the state process (st) is driven by an endogenous

autoregressive latent factor, instead of an independent and identically distributed sequence

of random variables. One important consequence of modeling the latent factor as an en-

dogenous autoregressive process is that (st) alone is no longer markovian: It is markovian

only jointly with the underlying time series (yt), and consequently, for our model in (8) the

conditional distribution of st is determined by the past observations of the state dependent

variable yt−i’s as well as the past states st−i’s for 1 ≤ i ≤ k+1 at any time t. This is shown

more explicitly in the next section. Furthermore, in our model, innovation (ut) affects the

transition of (st) only in the next period, and therefore, (st) becomes pre-determined in

this sense. Modeling endogeneity as in our model not only appears to be more realistic, but

also yields a model that is correctly specified as a conventional regression model. Note that

(mt) and (σt) become respectively the mean and volatility of (yt) in our model (4).

8For an easier comparison, we present their model using our notation. Their model also includes other
predetermined variables, which we ignore here to more effectively contrast their approach with ours. As we
explain in more detail later, our model may also easily accommodate the presence of other covariates.

9Note also that (σt) does not represent the conditional volatility of their error process (σtut), since (σt)
is contemporaneously correlated with (ut).
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2.2 Relationship with Conventional Markov Switching Model

Our model reduces to the conventional markov switching model when the underlying au-

toregressive latent factor is stationary and independent of the model innovation. This will

be explored below. In what follows, we assume

ρ = 0

to make our models more directly comparable to the conventional markov switching models,

and obtain the transition probabilities of the markovian state process (st) defined in (3).

In our approach, they are given as functions of the autoregressive coefficient α of the latent

factor and the level τ of threshold. Note that

P
{

st = 0
∣

∣wt−1

}

= P
{

wt < τ
∣

∣wt−1

}

= Φ(τ − αwt−1) (9)

P
{

st = 1
∣

∣wt−1

}

= P
{

wt ≥ τ
∣

∣wt−1

}

= 1− Φ(τ − αwt−1). (10)

Therefore, if we let |α| < 1 and denote the transition probabilities of the state process (st)

from low state to low state and from high state to high state by

a(α, τ) = P
{

st = 0
∣

∣st−1 = 0
}

, b(α, τ) = P
{

st = 1
∣

∣st−1 = 1
}

, (11)

then it follows that

Lemma 2.1. For |α| < 1, transition probabilities of state process (st) defined in (3) from

low state to low state and high state to high state are given by

a(α, τ) =

∫ τ
√
1−α2

−∞
Φ

(

τ − αx√
1− α2

)

ϕ(x)dx

Φ
(

τ
√
1− α2

)

b(α, τ) = 1−

∫ ∞

τ
√
1−α2

Φ

(

τ − αx√
1− α2

)

ϕ(x)dx

1− Φ
(

τ
√
1− α2

) ,

where a(α, τ) and b(α, τ) are defined in (11).

In particular, the state process (st) defined in (3) is a markov chain on {0, 1} with transition

density

p(st|st−1) = (1− st)ω(st−1) + st
[

1− ω(st−1)
]

, (12)
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Figure 1: Contours of Transition Probabilities in (α, τ)-Plane
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Notes: The contours of a(α, τ) and b(α, τ) are presented respectively in the left and right panels for
the levels from 0.05 to 0.95 in the increment of 0.05, upward for a(α, τ) and downward for b(α, τ).
Hence the top line in the left panel is the contour of a(α, τ) = 0.05, and the bottom line on the right
panel represents the contour of b(α, τ) = 0.05.

where ω(st−1) is transition probability to low state given by

ω(st−1) =

[

(1− st−1)

∫ τ
√
1−α2

−∞
+st−1

∫ ∞

τ
√
1−α2

]

Φ

(

τ − αx√
1− α2

)

ϕ(x)dx

(1− st−1)Φ
(

τ
√
1− α2

)

+ st−1

[

1− Φ
(

τ
√
1− α2

)]

with respect to the counting measure on {0, 1}.
The contours of the transition probabilities a(α, τ) and b(α, τ) obtained in Lemma 2.1

are presented in Figure 1 for various levels of 0 < a(α, τ) < 1 and 0 < b(α, τ) < 1. Figure

1 provides the contours of a(α, τ) and b(α, τ) in the (α, τ)-plane with −1 < α < 1 and

−∞ < τ < ∞ for the levels of a(α, τ) and b(α, τ) starting from 0.05 with the increment of

0.05 to 0.95. It is quite clear from Figure 1 that there exists a unique pair of α and τ values

yielding any given levels of a(α, τ) and b(α, τ), since any contour of a(α, τ) intersects with

that of b(α, τ) once and only once. For instance, the only pair of α and τ values that yields

a(α, τ) = b(α, τ) = 1/2 is given by α = 0 and τ = 0, in which case we have entirely random

switching from high state to low state and vice versa with equal probability.

To more clearly demonstrate the one-to-one correspondence between the pair (α, τ) of

autoregressive coefficient of latent factor and the threshold level and the pair (a(α, τ), b(α, τ))

of transition probabilities derived in Lemma 2.1, we show how we may find the correspond-

ing values of α and τ when the values of a(α, τ) and b(α, τ) are given. In Figure 2, we

set a(α, τ) = 0.796 and b(α, τ) = 0.901, the transition probabilities we obtain from our
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Figure 2: Correspondence Between (α, τ) and
(

a(α, τ), b(α, τ)
)

0.8 0.85 0.9 0.95 1
−4
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0
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τ

(0.894, -1.001)
a(α,τ) = 0.796

b(α,τ) = 0.901

Notes: The increasing and decreasing curves are, respectively, the contours of a(α, τ) = 0.796 and
b(α, τ) = 0.901 in the (α, τ)-plane. Their intersection at (α, τ) = (0.894,−1.001) provides the
(α, τ)-pair that yields the transition probabilities a(α, τ) = 0.796 and b(α, τ) = 0.901.

estimates from the Hamilton’s model for US GDP growth rates, and plot their contours

in the (α, τ)-plane. It is shown that the two contours intersect at one and only one point,

which is given by α = 0.894 and τ = −1.001.

If we set ρ = 0 in our model (4), the transition probabilities of the state process (st)

in (3) alone completely determine the regime switching without any interaction with other

parts of the model. This implies that by setting ρ = 0 and obtaining the values of α and

τ corresponding to the given values of a(α, τ) and b(α, τ), we may always find a regime

switching model with an autoregressive latent factor that is observationally equivalent to

any given conventional markov switching model. Our approach, however, produces an

important by-product that is not available from the conventional approach: an extracted

time series of the autoregressive latent factor driving the regime switching.

Now we let α = 1. In this case, the state process (st) defined in (3) becomes nonstation-

ary and its transition evolves with time t. For t ≥ 1, we subsequently define the transition

probabilities explicitly as functions of time as

at(τ) = P
{

st = 0
∣

∣st−1 = 0
}

, bt(τ) = P
{

st = 1
∣

∣st−1 = 1
}

, (13)

and show that

Corollary 2.2. Let α = 1, and let at(τ) and bt(τ) be defined as in (13). For t = 1,

a1(τ) = Φ(τ) with P{s0 = 0} = 1 if τ > 0, and , b1(τ) = 1 − Φ(τ) with P{s0 = 1} = 1 if
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τ ≤ 0. Moreover, we have

at(τ) =

∫ τ/
√
t−1

−∞
Φ
(

τ − x
√
t− 1

)

ϕ(x)dx

Φ
(

τ/
√
t− 1

)

bt(τ) = 1−

∫ ∞

τ/
√
t−1

Φ
(

τ − x
√
t− 1

)

ϕ(x)dx

1− Φ
(

τ/
√
t− 1

)

for t ≥ 2.

The state process (st) is a markov chain with transition density p(st|st−1) in (12) which is

defined now with the transition probability to low state ω(st−1) given by

ω(st−1) =

[

(1− st−1)

∫ τ/
√
t−1

−∞
+st−1

∫ ∞

τ/
√
t−1

]

Φ
(

τ − x
√
t− 1

)

ϕ(x)dx

(1− st−1)Φ
(

τ/
√
t− 1

)

+ st−1

[

1− Φ
(

τ/
√
t− 1

)]

with respect to the counting measure on {0, 1}. We may easily see that

at(τ), bt(τ) ≈ 1− 1

π
√
t− 1

for large t, where π = 3.14159 . . ., and therefore, the transition becomes more persistent in

this case as t increases. Moreover, the threshold parameter τ is unidentified asymptotically.

For the asymptotic identifiability of the threshold parameter when α = 1, we must set

τ = τ̄
√
n for some fixed τ̄ . This is obvious because in this case the latent factor (wt)

increases stochastically at the rate
√
n.

To compute the integrals in Lemma 2.1 and Corollary 2.2, we need to obtain the values

of

M(a, b, c) =

∫ a

−∞
Φ(b+ cx)ϕ(x)dx (14)

for all a, b, c ∈ R. This can be readily done. In fact, upon noticing that M(a, b, c) = P{Z1 ≤
a, Z2 ≤ b + cZ1}, where Z1 and Z2 are independent standard normal random variates, we

may easily deduce that

M(a, b, c) =

∫ a

−∞

∫ b

−∞
p(x, y)dydx,
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where

p(x, y) =
1

2π
exp

(

−(1 + c2)x2 + 2cxy + y2

2

)

= N

(

0,

(

1 −c

−c 1 + c2

))

.

Therefore, the integrals can be solved, if bivariate normal distribution function is provided.

Note that
∫ ∞

a
Φ(b+ cx)ϕ(x)dx = M(−a, b,−c),

which can also be easily obtained, once we compute the integral in (14) for all a, b, c ∈ R.

3 Estimation

Our endogenous regime switching model (4) can be estimated by the maximum likelihood

method. For the maximum likelihood estimation of our model, we write the log-likelihood

function as

ℓ(y1, . . . , yn) = log p(y1) +
n
∑

t=2

log p(yt|Ft−1) (15)

where Ft = σ
(

xt, (ys)s≤t

)

, i.e., the information given by xt, y1, . . . , yt for each t = 1, . . . , n.

Of course, the log-likelihood function includes a vector of unknown parameters θ ∈ Θ, say,

which specifies mt = m(xt, yt−1, . . . , yt−k, wt, . . . , wt−k) = m(xt, yt−1, . . . , yt−k, st, . . . , st−k)

and σt = σ(xt, wt, . . . , wt−k) = σ(xt, st, . . . , st−k). It is, however, suppressed for the sake of

notational brevity. The maximum likelihood estimator θ̂ of θ is given by

θ̂ = argmax
θ∈Θ

ℓ(y1, . . . , yn)

as usual. For the model we consider in (8), θ consists of state dependent mean and volatil-

ity parameters, (µ, µ̄) and (σ, σ̄), as well as the threshold τ level, the autoregressive coeffi-

cient α of the latent factor, the correlation coefficient ρ, and the autoregressive coefficients

(γ1, . . . , γk).

To estimate our general switching model in (4) by the maximum likelihood method, we

develop a modified markov switching filter. The conventional markov switching filter is no

longer applicable, since the state process (st) defined in (3) for our model is not a markov

chain unless ρ = 0. To develop the modified markov switching filter that can be used to

estimate our model, we let

Φρ(x) = Φ
(

x/
√

1− ρ2
)

(16)

for |ρ| < 1. We have



14

Theorem 3.1. Let |ρ| < 1. The bivariate process (st, yt) on {0, 1}×R is a (k+1)-st order

markov process, whose transition density with respect to the product of the counting and

Lebesgue measure is given by

p(st, yt|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= p(yt|st, . . . , st−k, yt−1, . . . , yt−k)p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1),

where

p(yt|st, . . . , st−k, yt−1, . . . , yt−k) = N
(

mt, σ
2
t

)

(17)

and

p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= (1− st)ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

+ st
[

1− ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)
]

(18)

with the transition probability ωρ of the endogenous state process (st) to low state. If |α| < 1,

ωρ is given by

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=

[

(1−st−1)

∫ τ
√
1−α2

−∞
+st−1

∫ ∞

τ
√
1−α2

]

Φρ

(

τ−ρ
yt−1−mt−1

σt−1
− αx√

1− α2

)

ϕ(x)dx

(1− st−1)Φ(τ
√

1− α2) + st−1

[

1−Φ(τ
√

1− α2)
] ,

and, if α = 1, for t = 1, ωρ(s0) = Φ(τ) with P{s0 = 0} = 1 and P{s0 = 1} = 1 respectively

when τ > 0 and τ ≤ 0 and, for t ≥ 2,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=

[

(1−st−1)

∫ τ/
√
t−1

−∞
+st−1

∫ ∞

τ/
√
t−1

]

Φρ

(

τ−ρ
yt−1−mt−1

σt−1
−x

√
t− 1

)

ϕ(x)dx

(1− st−1)Φ(τ/
√
t− 1) + st−1

[

1−Φ(τ/
√
t− 1)

] .

Theorem 3.1 fully specifies the joint transition of (st) and (yt) in case of |ρ| < 1.10

If |ρ| = 1, we have perfect endogeneity and Φρ in (16) is not defined. In this case,

the current shock to model innovation ut fully dictates the realization of latent factor wt+1

determining the state in the next period. Consequently the transition of the state process

10It is clearly seen from Theorem 3.1 that the parameters α, τ and ρ in our model are all identified.
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(st) given by the density p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1), which is derived above for

|ρ| < 1 in Theorem 3.1, is no longer applicable. When |ρ| = 1, the transition probability

to low state ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1) behaves differently, which in turn implies

that transition density of the state process needs to be modified accordingly. The transition

probability to low state ωρ in this case is given explicitly below for various values of AR

coefficient α of the latent factor (wt).

Corollary 3.2. If |ρ| = 1, the transition probability of the endogenous state process (st)

to low state ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1) on the previous states and past observed

time series, introduced in Theorem 3.1, is given as follows:

(a) If α = 0

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1) =







1, if ρ
yt−1 −mt−1

σt−1
< τ

0, otherwise

(b) If 0 < α < 1,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= (1− st−1)min



1,
Φ
((

τ−ρyt−1−mt−1

σt−1

)√
1−α2

α

)

Φ
(

τ
√
1− α2

)





+ st−1max



0,
Φ
((

τ−ρyt−1−mt−1

σt−1

)√
1−α2

α

)

− Φ
(

τ
√
1− α2

)

1− Φ
(

τ
√
1− α2

)





(c) If −1 < α < 0,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= st−1 min



1,
1− Φ

((

τ−ρyt−1−mt−1

σt−1

)√
1−α2

α

)

1− Φ
(

τ
√
1− α2

)





+ (1− st−1)max



0,
Φ
(

τ
√
1− α2

)

− Φ
((

τ−ρyt−1−mt−1

σt−1

)√
1−α2

α

)

Φ
(

τ
√
1− α2

)





(d) If α = 1, for t = 1, ωρ(s0, y0) = Φ (τ − ρ(y0 −m0)/σ0) with P{s0 = 0} = 1 and
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P{s0 = 1} = 1 respectively when τ > 0 and τ ≤ 0 and, for t ≥ 2,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=























1− st−1, if ρ
yt−1 −mt−1

σt−1
> 0

Φ

((

τ−ρ
yt−1−mt−1

σt−1

)

1√
t− 1

)

− st−1Φ
(

τ/
√
t− 1

)

(1− st−1)Φ
(

τ/
√
t− 1

)

+ st−1

[

1− Φ
(

τ/
√
t− 1

)] , otherwise

As shown in Theorem 3.1 and Corollary 3.2, the transition density of the state process (st)

at time t from time t − 1 depends upon yt−1, . . . , yt−k−1 as well as st−1, . . . , st−k−1. The

state process (st) alone is therefore not markovian. However, the state process augmented

with the observed time series (st, yt) becomes a (k + 1)-st order markov process. If ρ = 0,

we have ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1) = ω(st−1). In this case, the state process (st)

reduces to a first order markov process independent of (yt) as in the conventional markov

switching model, with the transition probabilities obtained in Lemma 2.1.

Our modified markov switching filter consists of the prediction and updating steps,

which are entirely analogous to those in the usual Kalman filter. To develop the modified

markov switching filter, we write

p(yt|Ft−1) =
∑

st

· · ·
∑

st−k

p(yt|st, . . . , st−k,Ft−1)p(st, . . . , st−k|Ft−1). (19)

Since p(yt|st, . . . , st−k,Ft−1) = p(yt|st, . . . , st−k, yt−1, . . . , yt−k) is given by (17), it suffices

to have p(st, . . . , st−k|Ft−1) to compute the log-likelihood function in (15), which we obtain

in the prediction step. For the prediction step, we note that

p(st, . . . , st−k|Ft−1) =
∑

st−k−1

p(st|st−1, . . . , st−k−1,Ft−1)p(st−1, . . . , st−k−1|Ft−1), (20)

and that p(st|st−1, . . . , st−k−1,Ft−1) = p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1), which is given

in (18). Consequently, p(st, . . . , st−k|Ft−1) can be readily computed from (20), once we ob-

tain p(st−1, . . . , st−k−1|Ft−1) from the previous updating step. Finally, for the updating

step, we have

p(st, . . . , st−k|Ft) = p(st, . . . , st−k|yt,Ft−1)

=
p(yt|st, . . . , st−k,Ft−1)p(st, . . . , st−k|Ft−1)

p(yt|Ft−1)
, (21)
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where p(yt|st, . . . , st−k,Ft−1) is given by (17), and we may readily obtain p(st, . . . , st−k|Ft)

from p(st, . . . , st−k|Ft−1) and p(yt|Ft−1).

Using our modified markov switching filter based on the state process (st), we can also

easily extract the latent autoregressive factor (wt). This can be done through the prediction

and updating steps described above in (20) and (21). In the prediction step, we note that

p(wt, st−1, . . . , st−k|Ft−1) =
∑

st−k−1

p(wt|st−1, ..., st−k−1,Ft−1)p(st−1, ..., st−k−1|Ft−1). (22)

Since p(st−1, ..., st−k−1|Ft−1) is obtained from the previous updating step, we may readily

compute p(wt, st−1, . . . , st−k|Ft−1) from (22) once we find p(wt|st−1, ..., st−k−1,Ft−1), the

conditional density of latent factor (wt) on previous states and past information on the

observed time series, which is derived below for various values of AR coefficient α of latent

factor and endogeneity parameter ρ.

Corollary 3.3. The transition density of latent factor (wt) on previous states and past

observed time series is given as follows:

(a) When |α| < 1 and |ρ| < 1,

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=

(

1− Φ

(

√

1−ρ2+α2ρ2

1−ρ2

(

τ −
α
(

wt−ρ
yt−1−mt−1

σt−1

)

1−ρ2+α2ρ2

)))

1− Φ
(

τ
√
1− α2

) N

(

ρ
yt−1 −mt−1

σt−1
,
1− ρ2 + α2ρ2

1− α2

)

,

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=

Φ

(

√

1−ρ2+α2ρ2

1−ρ2

(

τ −
α
(

wt−ρ
yt−1−mt−1

σt−1

)

1−ρ2+α2ρ2

))

Φ
(

τ
√
1− α2

) N

(

ρ
yt−1 −mt−1

σt−1
,
1− ρ2 + α2ρ2

1− α2

)

.
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(b) When |α| < 1 and |ρ| = 1,

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=























√
1− α2

α
φ

(

wt − ρyt−1−mt−1

σt−1

α

√

1− α2

)

1−Φ(τ
√
1−α2)

, if wt ≥ ατ + ρ
yt−1 −mt−1

σt−1

0, otherwise,

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=























√
1− α2

α
φ

(

wt − ρyt−1−mt−1

σt−1

α

√

1− α2

)

Φ(τ
√
1−α2)

, if wt ≤ ατ + ρ
yt−1 −mt−1

σt−1

0, otherwise.

(c) When α = 1 and |ρ| < 1,

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=

(

1− Φ

(

√

t−tρ2+ρ2

1−ρ2

(

τ −
wt−ρ

yt−1−mt−1

σt−1

t−tρ2+ρ2

)))

1−Φ
(

τ/
√
t− 1

) N

(

ρ
yt−1 −mt−1

σt−1
,
t− tρ2 + ρ2

t− 1

)

,

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=

Φ

(

√

t−tρ2+ρ2

1−ρ2

(

τ −
wt−ρ

yt−1−mt−1

σt−1

t−tρ2+ρ2

))

Φ
(

τ/
√
t− 1

) N

(

ρ
yt−1 −mt−1

σt−1
,
t− tρ2 + ρ2

t− 1

)

.
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(d) When α = 1 and |ρ| = 1,

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=























1√
t− 1

φ

(

wt − ρyt−1−mt−1

σt−1

t− 1

)

1−Φ(τ/
√
t−1)

, if wt ≥ τ + ρ
yt−1 −mt−1

σt−1

0, otherwise,

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=























1√
t− 1

φ

(

wt − ρyt−1−mt−1

σt−1

t− 1

)

1−Φ(τ/
√
t−1)

, if wt ≤ ατ + ρ
yt−1 −mt−1

σt−1

0, otherwise.

We may then obtain

p(wt, st−1, ..., st−k|Ft) =
p(yt|wt, st−1, ..., st−k,Ft−1)p(wt, st−1, ..., st−k |Ft−1)

p(yt|Ft−1)
, (23)

in the updating step. By marginalizing p(wt, st−1, ..., st−k|Ft) in (23), we get

p (wt|Ft) =
∑

st−1

· · ·
∑

st−k

p (wt, st−1, ..., st−k|Ft) ,

which yields the inferred factor,

E (wt|Ft) =

∫

wtp (wt|Ft) dwt

for all t = 1, 2, . . .. Therefore, we may easily extract the inferred factor, once the maximum

likelihood estimates of p(wt|Ft), 1 ≤ t ≤ n, are available.

We may generalize our model and allow for other covariates to affect the regime switching

process. For instance, we may specify the state dependent parameter πt as

πt = π(wt, xt),

where (xt) is a time series of covariates that are predetermined and observable, and accord-

ingly the level function π as

π(w, x) = π1
{

w < τ1 + τ ′2x
}

+ π̄1
{

w ≥ τ1 + τ ′2x
}
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with parameters (π, π̄) and (τ1, τ2), in place of (2). The level of threshold for regime

switching is therefore given as a linear function of some predetermined and observable

covariates. All of our previous results extend to this more general model only with some

trivial modifications. Since the required modifications are quite clear, we do not explain

them in detail here. This model is more directly comparable to the one considered in Kim

et al. (2008).

We may also easily extend our model to allow for a more general level function π(w) than

the one introduced in (2). One obvious possibility is to use the level function that allows for

multiple regimes, more than two. The extended models with a more general level function

allowing for multiple regimes can also be estimated using our modified markov switching

filter similar to that with the simple two-regime level function that we discussed in detail

in the previous sections. We may further extend our model to allow for a continuum of

regimes. In this case, however, our modified markov switching filter is no longer applicable,

and we need to use a density based filter to estimate the parameters.

4 Simulations

To evaluate the performance of our model and estimation procedure, we conduct an exten-

sive set of simulations. In the sequel, we will present our simulation models and results.

4.1 Simulation Models

In our simulations, we consider both mean and volatility switching models. For the volatility

model, we consider

yt = σ(st)ut, σ(st) = σ(1− st) + σst. (24)

The parameters σ and σ are set at σ = 0.04 and σ = 0.12, which are roughly the same as

our estimates for the regime switching volatilities for the stock returns we analyze in the

next section. The level of volatility in high regime is three times bigger than that in low

regime. On the other hand, our simulations for the mean model rely on

yt = µ(st) + γ(yt−1 − µ(st−1)) + σut, µ(st) = µ(1− st) + µst. (25)

We set the parameter values at σ = 0.8, γ = 0.5, µ = 0.6 and µ = 3. They are approximately

the same as the estimates that we obtain using the US real GDP growth rates analyzed in

the next section.

For both mean and volatility models, (st) and (ut) are generated as specified in (1), (3)

and (5) for the samples of size 500, and iterated 1,000 times. The correlation coefficient



21

ρ between the current model innovation ut and the next period innovation vt+1 of the

latent autoregressive factor is set to be negative for both mean and volatility models, as

in most of our empirical results reported in the next section. To more thoroughly study

the impact of endogeneity on the estimation of our model parameters, we allow ρ to vary

from 0 to −1 in the increment of 0.1. On the other hand, we consider three pairs of

the autoregressive coefficient α of the latent factor and the threshold level τ given by

(α, τ) = (0.4, 0.5), (0.8, 0.7), (1, 9.63). The first two pairs with |α| < 1 yield stationary

latent factors, while the last pair with α = 1 makes the latent factor a random walk.

As discussed earlier, if ρ = 0, there exists a one-to-one correspondence between the (α, τ)

pair and the pair (a, b) of transition probabilities of state process, where a and b denote

respectively the transition probabilities from low to low state and from high to high state.

The first pair (α, τ) = (0.4, 0.5) corresponds to (a, b) = (0.75, 0.5), and the second pair

(α, τ) = (0.8, 0.7) to (a, b) = (0.86, 0.72). The transitions of these two pairs have the same

equilibrium distribution given by (a∗, b∗) = (2/3, 1/3), which also becomes the common

invariant distribution.11 This, in particular, implies that the unconditional probabilities of

the state being in low and high regimes are 2/3 and 1/3 respectively in every period. For

the third pair with α = 1, the state process is nonstationary and its transition varies over

time with no existing invariant distribution. Our choice of τ = 9.63 in the third pair yields

the unconditional probabilities (2/3, 1/3) of low and high regimes at the terminal period of

our simulation, which makes it comparable to the first two pairs.12

4.2 Simulation Results

In our simulations, we first examine the endogeneity bias. The estimators of parameters in

our models are expected to be biased if the presence of endogeneity in regime switching is

ignored. To see the magnitude of bias resulting from the neglected endogeneity in regime

switching, we let ρ = 0 for the exogenous regime switching models. Our simulation results

are summarized in Figure 3. On the left panel of Figure 3, the bias in the maximum

likelihood estimates σ̂ and σ̂ of low and high volatility levels σ and σ in the volatility

model are presented in the upper and lower parts of the panel for three different levels of

α measuring persistency of latent factor in each of the three columns on the panel. Hence,

there are 6 individual graphs covering the bias in the estimates σ̂ and σ̂ for three levels of

α = 0.4, 0.8, 1. Each graph plots the bias of the estimates from the endogenous (red solid

line) and exogenous (blue dashed line) models across different levels of endogeneity ρ on

11Recall that the invariant distribution of the two-state markov transition given by a 2 × 2 transition
matrix P is defined by π∗ = (a∗, b∗) such that π∗ = π∗P .

12Note that w500 =d N(0, 500) when α = 1 and ρ = 0.
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Figure 3: Endogeneity Bias

Notes: On the left panel, the bias in ML estimates σ̂ and σ̂ of low and high volatility levels σ
and σ from the volatility model are presented respectively in the upper and lower parts, for three
persistency levels of latent factor α = 0.4, 0.8, 1, in each of its three columns. Each of the six
individual graphs plots the bias from the endogenous (red solid line) and exogenous (blue dashed
line) regime switching models across different levels of endogeneity parameter ρ on the horizontal
axis. Presented in the same manner on the right panel are the bias in the ML estimates µ̂, µ̂ and γ̂ of
low and high mean levels and AR coefficient of observed time series, µ, µ and γ, estimated from the
mean model. There are 9 individual graphs covering the bias in three estimates for three persistency
levels of the latent factor.

the horizontal axis. Similarly the right panel of Figure 3 presents the bias in the maximum

likelihood estimates µ̂, µ̂ and γ̂ of low and high mean levels and AR coefficient of observed

time series from the mean model. There are 9 individual graphs covering the bias in three

estimates µ̂, µ̂ and γ̂ for three persistency levels α = 0.4, 0.8, 1 of the latent factor.

The endogeneity in regime switching, if ignored, may yield substantial bias in the esti-

mates of model parameters. This turns out to be true for both mean and volatility models,

though the deleterious effect of the neglected endogeneity is relatively bigger in the mean

model. The magnitude of bias tends to be larger when α is away from unity and the latent

autoregressive factor is more stationary. For example, when α = 0.4 and ρ = −0.7, the

bias of the estimates µ̂, µ̂, and γ̂ in the mean model are respectively 38.7%, −10.8%, and

−86.7%. If, however, α is close to unity, the neglected endogeneity does not appear to

yield any substantial bias. In fact, when α = 1 and the latent factor becomes a random

walk, the effect of endogeneity on parameter estimates in both mean and volatility models

becomes insignificant. In all cases, however, the magnitude of bias becomes larger as |ρ|
gets bigger and the degree of endogeneity increases. Though we do not report the details
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Figure 4: Efficiency Gain from Endogeneity

Notes: Respectively presented in the left and right panels of Figure 4 are the standard errors of
the ML estimates of the parameters in our endogenous volatility and mean switching models. The
6 graphs on the left and 9 graphs on the right panels present the standard errors of ML estimates
from the volatility and mean models in the exactly the same manner as in Figure 3.

to save space, our simulations show that the inferred probabilities of latent states are also

affected seriously if the endogeneity in regime switching is not properly taken care of.

Not only can the presence of endogeneity give us a pitfall leading to a substantial bias

in parameter estimates, but also an opportunity to improve the precision of parameter

estimates in markov switching models. In fact, in the endogenous regime switching model,

additional information on the state process (st) is provided by the observed time series (yt).

Note that the transition of the state process (st) in our models is determined by lags of (yt)

as well as lags of (st), and therefore we have an additional channel for the information in (yt)

to be accumulated in the likelihood function. This is not the case if we let ρ = 0 as in the

conventional markov switching model that does not allow for the presence of endogeneity.

The simulation results in Figure 4 show that the presence of endogeneity in regime switching

indeed improves the efficiency of parameter estimates, if accounted for properly as in our

endogenous models. The standard errors of ML estimates of the parameters in our volatility

and mean models are presented respectively in the left and right panels of Figure 4 in exactly

the same manner as in Figure 3.

As shown in Figure 4, the efficiency gain from the presence of endogeneity in regime

switching can be quite substantial. This is equally true for both mean and volatility models.

For instance, if we set α = 0.8, the standard deviations of the estimators µ̂ and σ̂ from our
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mean and volatility models having endogenous regime switching with ρ = −0.9 decrease by

approximately 24% and 22%, respectively, if compared with the models having exogenous

regime switching with ρ = 0. Of course, the presence of endogeneity yields efficiency gain,

only when it is properly taken into account. If the conventional markov switching model

is used, the presence of endogeneity in most cases has a negative effect on the standard

deviations of parameter estimators.

In general, the standard deviations of parameter estimators are greatly reduced in both

mean and volatility models if we have endogeneity in regime switching, as long as |α| < 1

and the latent factor is stationary. Naturally, the efficiency gain increases as |ρ| gets large

and the degree of endogeneity increases. On the other hand, when the latent factor is

nonstationary with α = 1, the standard errors of parameter estimators from the endogenous

model remain more or less constant across ρ, showing little or no sign of efficiency gain.

This may be due to the fact that switching occurs rarely when the latent factor is highly

persistent, reducing the opportunity for additional information contained in the observed

time series on the switching to play a positive role.13

Finally, we consider testing for the presence of endogeneity in regime switching models

based on the likelihood ratio test given by

2(ℓ(θ̂)− ℓ(θ̃)), (26)

where ℓ signifies the log-likelihood function and the parameter θ with tilde and hat denote

their maximum likelihood estimates with and without the no endogeneity restriction, ρ = 0.

The likelihood ratio test has a chi-square limit distribution with one degrees of freedom.

Presented in the left and right panels of Figure 5 are the power functions of the likelihood

ratio test computed from the simulated volatility and mean switching models for three dif-

ferent levels of persistency in the latent factor measured by its AR coefficient α = 0.4, 0, 8, 1.

For the stationary regime switching model with α = 0.4 or 0.8, the test is very powerful

with the actual power increasing rapidly as the value of endogeneity parameter |ρ| gets
large. Under the null hypothesis of no endogeneity, the test has good size properties overall

in the volatility model, but it tends to over-reject in the mean model when the sample size

is only moderately large as the latent factor becomes more persistent. Though we do not

report the details, the size distortion disappears as sample size increases. In contrast, the

test does not work well when α = 1 and the latent factor becomes nonstationary. In this

13On the average, the regime change occurs 160, 100, and 15 times out of 500, respectively, for three
pairs of (α, τ ) = (0.4, 0.5), (0.8, 0.7), and (1, 9.63) we consider in our simulations. This clearly shows a rapid
decline of regime change frequency as the value of AR coefficient α gets closer to 1 and the latent factor
becomes a random work.
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Figure 5: Power Function of LR Test for Endogeneity
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Notes: The left and right hand side graphs of Figure 5 present the power functions of the likelihood
ratio test computed respectively from the volatility and mean switching models for three different
levels of persistency in the latent factor (wt) measured by its AR coefficient α = 0.4, 0, 8, 1.

case, the power function increases very slowly as |ρ| gets large, and tends to over-reject in

the mean model. The overall performance of the test in the nonstationary case is relatively

much worse than the stationary cases.

5 Empirical Illustrations

To illustrate our approach empirically, we analyze the excess market returns using the

volatility model with regime switching (24) studied in our earlier simulations, and the US

GDP growth rates by a mean model with regime switching similar to (25) which is also

examined in our simulations.

5.1 Stock Market Return Volatilities

For market returns, we consider the returns on NYSE/AMEX index from the Center for

Research in Security Prices (CRSP). Specifically, we use the monthly series of value-weighted

stock returns including dividend for the period from January 1926 to December 2012, along

with the information on their quote date. For our analysis, we use the demeaned excess

market returns (yt) to fit the volatility model in (24).14 Table 1 reports the estimation

results for the excess market return volatility model with regime switching for two sample

14To compute monthly excess return, we first obtain monthly risk free rate of return by continuously
compounding daily risk free rate between the quotation dates. The number of days between quotation dates
ranges from 28 to 33. CRSP provides monthly series of annualized yield to maturity (TMYTM), which
is constructed from nominal price of three month treasury bill. Thus we obtain the yield to maturity at
monthly frequency by first converting the annual yield to maturity to daily (TMYLD) by the conversion
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periods: the full sample period (1926-2012) and the recent subsample period (1990-2012).

We choose this subsample period to relate the extracted latent volatility factor obtained

from our endogenous switching model with one of the most widely used volatility index VIX

which is available only from 1990.

For the ML estimation of parameters and transition probabilities in the volatility switch-

ing model, we use our modified markov switching filter together with the numerical opti-

mization method including the commonly used BFGS (Broyden-Fletcher-Goldfarb-Shanno)

algorithm. When likelihood function is highly nonlinear as in our switching models, it is

well known that numerical optimization often fails to find global maximum and ends up

with local maximum depending on the choice of initial values. However, we notice that in

our switching models we can effectively profile out all the parameters but α and ρ, and once

we fix α and ρ, our numerical maximization procedure successfully finds global maximum

regardless of the choices on initial values.

For the exogenous model, we analyze profile likelihood in terms of α only, which is

obtained by maximizing the likelihood for each value of α over all the other parameter

values, and then maximize the profile likelihood over all α values considered. The left

hand side graph of Figure 6 shows the profile likelihood function of α obtained from the

exogenous switching model when we fix α at a value from 0.1 to 0.9 with 0.1 increment.15

For the endogenous switching model, we consider profile likelihood in terms of both α and

ρ, and maximize it over all pairs of α and ρ considered. The graph on the right hand side of

Figure 6 presents the profile likelihood surface plot obtained from our endogenous volatility

switching model when we fix ρ as well as α. To obtain the surface plot, we consider 171

combinations of α and ρ from setting α at a value from 0.1 to 0.9 and ρ at a value from −0.9

to 0.9 with 0.1 increment.16 We may see clearly from Figure 6 that the profile likelihood

formula CRSP provides as

TMY LDt =
1

365

1

100
TMY TMt,

and then continuously compounding this daily yield to obtain the monthly yield as

e
TMY LDt−1×Nt

− 1,

where Nt is the number of days between the quote date for the current month and the quote date
MCALDTt−1 for the previous month. Finally, we obtain monthly excess market return data by subtracting
the above monthly risk free rate from the market return.

15For each fixed value of α, we try 12 to 60 different initial value combinations for all the other parameters
to find the maximum value for the profile likelihood function. However, regardless of the choices on initial
values, the numerical maximization finds unique maximum once we fix α and the global maximum would
be found around α = 0.9.

16For each of these combinations of α and ρ, we try 7 to 35 different sets of initial values of all the
other parameters to find the maximum. Our numerical method finds local maxima for some initial value
combinations when ρ is positive. Those local maxima correspond to the flat area in the surface plot on the
right side of Figure 6, which is well below the global maximum. When ρ is negative, on the other hand, our
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Figure 6: Profile Likelihood for Volatility Switching Model
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Notes: Figure 6 presents profile likelihood functions from volatility switching models for the period
1990 to 2012. The left hand side graph shows the profile likelihood of α from the exogenous regime
switching model, which is obtained by concentrating out all the other parameters. Similarly, the
right hand side graph shows the surface plot of joint profile likelihood of α and ρ from our endogenous
regime switching model obtained by profiling out all the other remaining parameters.

increases monotonically until α and ρ reach 0.9 and −0.9 respectively.

As reported in Table 1, the volatility level estimates and their standard errors given

underneath in parenthesis from our endogenous regime switching model are similar to those

from the exogenous model in the full sample period, but they are bigger than those from their

exogenous counterpart for the recent subsample. However, the estimates for the endogeneity

parameter ρ are quite substantial in both samples, −0.970 for the full sample and −0.999

for the subsample,17 providing an ample evidence for the presence of endogeneity in regime

switching in the market volatility. Table 1 also shows that the maximum value of the

log-likelihood function from the endogenous switching model is larger than that from the

exogenous switching model that ignores endogeneity. We formally test for the presence of

endogeneity in regime switching using the usual likelihood ratio test given in (26). In both

sample periods, we reject the null of no endogeneity at 1% significance level, as reported in

the bottom line of Table 1. For the full sample period 1926-2012, the estimates of α and

numerical method seems to always find unique maximum for any α value.
17Here our estimate of ρ for the subsample is virtually identical to −1, in which case the current shock

to the stock returns would completely determine the level of latent factor and the state for their volatility
regime in the next period. The true value of ρ may be −1 or very close to −1. However, it may also be
spuriously obtained by fitting a model with regime switching in volatility for a process generated without any
changing regimes, whose probabilities we found by simulation to be around 30%. Indeed, when ρ is restricted
to −1, we have essentially the same estimates for σ and σ with almost identical maximum likelihood value.



28

Table 1: Estimation Results for Volatility Model

Sample Periods 1926-2012 1990-2012

Endogeneity Ignored Allowed Ignored Allowed

σ 0.039 0.038 0.022 0.025
(0.001) (0.001) (0.002) (0.004)

σ 0.115 0.115 0.050 0.055
(0.009) (0.009) (0.003) (0.008)

ρ –0.970 –0.999
(0.086) (0.010)

log-likelihood 1742.536 1748.180 507.700 511.273
p-value (LR test for ρ = 0) 0.001 0.008

τ in the exogenous model are 0.994 (0.004) and 11.375 (4.472), from which we have 0.991

and 0.928 as the estimates of the low-to-low and high-to-high transition probabilities. In

the endogenous model, we obtain 0.986 (0.009) and 7.385 (2.567) for α and τ . On the other

hand, for the recent subsample period 1990-2012, we find 0.997 (0.003) and −3.212 (7.055)

as the estimates of α and τ in the exogenous model, which yield 0.973 and 0.981 for the

low-to-low and high-to-high transition probabilities. For the endogenous model, we have

0.979 (0.044) and 0.685 (2.114) for α and τ .

What is most clearly seen from Figure 7 is the striking difference in the time series

plots of the transition probabilities estimated from the exogenous and endogenous volatility

regime switching models. The transition probability estimated by the exogenous model

is constant over the entire sample period, while the corresponding transition probabilities

estimated by the endogenous model vary over time, and depend upon the lagged value of

excess market return yt−1 as well as the realized value of the previous state st−1. This point

is clearly demonstrated in the left hand side graph of Figure 7 which presents the transition

probability from low volatility regime at t − 1 to high volatility regime at t estimated by

the exogenous and endogenous switching models. This low to high transition probability is

estimated to be 2.7% throughout the entire sample period by the exogenous model, while in

contrast the corresponding transition probabilities estimated by the endogenous model vary

over time with the realized values of lagged excess market return. It shows in particular that

the transition probabilities have been changing drastically, and reach as high as 87.1% at

a time, which is 32 times bigger than its counterpart from the exogenous regime switching

model. The right hand side graph of Figure 7 similarly illustrates the same point with the

transition probability from high volatility state at t− 1 to high volatility state at t by the

exogenous and endogenous switching models.
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Figure 7: Estimated Transition Probability from Volatility Model
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Notes: Figure 7 presents the transition probabilities from volatility model. The left hand side
graph shows the transition probability from low to high volatility state: the blue solid line refers
to P(st = 1|st−1 = 0, yt−1) in our endogenous regime switching model, while the red dashed line
corresponds to P(st = 1|st−1 = 0) in the exogenous regime switching model. Similarly, the right
hand side graph shows the transition probabilities staying at high volatility state.

The variation of the transition probabilities in the endogenous switching model is truly

meaningful when the regime is about to change. Figure 8 illustrates convincingly that the

time varying transition probabilities from the endogenous model can indeed produce more

realistic assessment for the likelihood of moving into a low volatility regime from a high

volatility regime. We first measure the monthly market volatility by sum of squared daily

returns on NYSE/AMEX index during the recent 2008-2009 financial crisis to see if there

is a period that can be unarguably defined as a high volatility regime. The left hand side

graph of Figure 8 presents the time series of annualized monthly volatility. The time series

of monthly stock returns is also presented on the graph on the right. The volatility increased

dramatically in September 2008 when Lehman Brothers declared bankruptcy and stayed

high until May 2009. We consider this period as a high volatility regime. The volatility

level in each month during this high volatility regime from September 2008 to May 2009 is

at least twice higher than the average volatility computed over the 32-month period ending

at the start of this high volatility regime in September 2008. The shaded areas on both

graphs of Figure 8 indicate this high volatility period.

The high to low transition probabilities during the high volatility regime are presented

on the right hand side graph of Figure 8, where the green line signifies the time vary-

ing transition probability P(st = 0|st−1 = 1, yt−1) estimated from our endogenous regime

switching model, while the red line corresponds to the constant transition probability

P(st = 0|st−1 = 1) obtained from the exogenous switching model. Indeed the transition
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Figure 8: Transition Probabilities for Recent Financial Crisis Period

Notes: The high to low transition probabilities during the high volatility regime from September 2008
to May 2009 are presented on the right hand side graph of Figure 8, where the green line signifies
the time varying transition probability P(st = 0|st−1 = 1, yt−1) estimated from our endogenous
regime switching model, while the red line corresponds to the constant transition probability P(st =
0|st−1 = 1) obtained from the exogenous switching model. The solid line on the left and the dashed
line on the right graphs respectively present the time series of annualized monthly volatility and the
monthly NYSE/AMEX index returns. The shaded areas on both graphs of Figure 8 indicate the
high volatility regime.

probability estimated by the exogenous model stays constant for the entire duration of the

high volatility regime, which is in sharp contrast to the substantially time varying transition

probabilities obtained from the endogenous model. Notice that the high to low transition

probability from our endogenous model is smaller than that from the exogenous model at

the beginning of the high volatility regime; however, it goes up drastically toward the end

of the high volatility regime, which coincides not surprisingly with the rapid recovery of

the stock market in early spring of 2009. The time varying transition probability produced

from our endogenous switching model therefore represents the reality we observe much bet-

ter, which in turn explains the higher precision and efficiency of the parameter estimates

obtained from our endogenous regime switching model observed in our earlier simulation

studies.

To see how well our endogenous volatility switching model can explain the current state

of market volatility, we compare the sample paths of the extracted latent factor with that

of VIX, a popular measure for implied market volatility, over the subsample period 1990 to

2012 where VIX is available. See Figure 13 in Appendix, which presents the sample path

of the extracted latent factor along with that of the CBOE (The Chicago Board Options

Exchange) volatility index VIX for the period 1990-2012. VIX stayed relatively high during

1998-2004 and 2008 periods indicating that the volatility was high during those periods.
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As shown in Figure 13, the extracted latent factor obtained from our endogenous volatility

model also stays relatively high, moving closely with VIX during those high volatility pe-

riods. VIX has been used as a gauge for “fear factor” or an indicator for the overall risk

level of market. Therefore the extracted latent factor from our volatility model may be

considered as an alternative measure which can play the similar role played by VIX.

We also compute for each period the inferred probability of being in the high volatility

regime using our endogenous volatility switching model as well as the conventional exoge-

nous switching model. They are presented in Figure 14 in Appendix. Overall the time

series of the high volatility probabilities computed from both endogenous and exogenous

switching models are similar. There are however some noticeable differences. In general,

those obtained from our endogenous model tend to fluctuate more over time compared to

those from its exogenous counterpart. Moreover, it is interesting to note that the proba-

bility of being in high volatility regime computed from our endogenous model is exactly

at 1 during the 2008 financial crisis, while that from the exogenous model does not quite

reach 1, albeit close to 1, which demonstrates the potential of our model to more precisely

estimate the probability of the financial market becoming unstable. Therefore we may also

say that our endogenous switching model can be used as a warning system for detecting

unusual unstability in financial market.

5.2 GDP Growth Rates

In this section, we investigate regime switching behavior of the US real GDP growth rates

constructed from the seasonally adjusted quarterly real GDP series for the period 1952:Q1-

2012:Q4.18 As in Hamilton (1989), we model the real GDP growth rates (yt) as an AR(4)

process similarly as in (25). Since there seems to be a structural break in the postwar U.S.

real GDP growth rates in 1984:Q1, as noted in Kim and Nelson (1999), we consider two

sample periods: the earlier sample period covering 1952:Q1-1984:Q4, and the more recent

sample period covering 1984:Q1-2012:Q4. Kim and Nelson (1999) provides an empirical

study of the regime switching model for US growth rates considered in Hamilton (1989)

for the earlier sample period. We use the same data used in their study and compare our

results with theirs.19

We estimate the mean switching model for the GDP growth rates using our new mod-

ified markov switching filter along with BFGS method. To ensure that we find the global

maximum, we look at the profile likelihood as done in the volatility model for the market

18Source: Bureau of Economic Analysis, US Department of Commerce. The growth rate of real GDP is
calculated as the first difference of log real GDP.

19We use the data provided in the website for Kim and Nelson (1999).
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Figure 9: Profile Likelihood for Mean Switching Model
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Notes: Figure 9 presents the profile likelihood from mean switching model for the period 1984-2012.
The left hand side graph shows the profile likelihood from the exogenous regime switching model
which is obtained by profiling out all the parameters but α here. Similarly, the graph on the right
presents the profile likelihood surface plot from our endogenous regime switching model obtained by
profiling out all the parameters but α and ρ.

excess return considered earlier. Figure 9 shows the profile likelihood for the recent sample

period from 1984:Q1 to 2012:Q4. The left hand side graph in Figure 9 shows the plot of

the maximum values of the likelihood function from the exogenous model when we fix α at

a value from 0.1 to 0.9 with 0.1 increment.20 The profile likelihood function of α on the left

side of Figure 9 clearly shows that the global maximum for the exogenous switching mean

model is reached when α is around 0.8. The right hand side graph in Figure 9 presents the

profile likelihood surface from our endogenous mean switching model when we fix α at a

value from 0.1 to 0.9 and ρ from −0.9 to 0.9 with 0.1 increment.21 It is clearly demonstrated

in Figure 9 that the global maximum is found around (α, ρ) = (0.8, 0.9) for the endogenous

20For each fixed value of α, we try 60 to 300 different sets of initial values for all the other parameters
to obtain maximized likelihood. For most of the cases, they converge to unique maximum once we fix
α. Unlike in the volatility model, we get local maxima for some of the initial values in the mean model.
However, they do not cause any serious problem, because they are substantially away from the maximum of
the profile likelihood function. For instance, when α = 0.7, 0.8 or 0.9, we find the maximum and one other
local maximum, which is far blow the maximum for each of these cases, and this happens exclusively when
we set the initial value for the high to high transition probability at 0.5. We like to know that we always
have unique local maximum whenever we have local maxima. We also have a local maximum when α = 0.2,
in which case the maximum likelihood value is close to the local maximum. Even in this case, however, our
filter still manages to successfully identify the global maximum.

21For each combination of α and ρ, we try one to 15 different sets of initial values of the remaining
parameters for profile likelihood maximization. Though our numerical methods find local maxima for profile
likelihood for some initial value combinations, it always finds unique maximum when α is close to one and
ρ is close to negative one.
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Table 2: Maximum Likelihood Estimates for Hamilton (1989) Model

Sample Periods 1952-1984 1984-2012

Endogeneity Ignored Allowed Ignored Allowed

µ –0.165 –0.083 –0.854 –0.758

(0.219) (0.161) (0.298) (0.311)
µ 1.144 1.212 0.710 0.705

(0.113) (0.095) (0.092) (0.085)
γ1 0.068 0.147 0.154 0.169

(0.123) (0.104) (0.105) (0.105)
γ2 –0.015 0.044 0.350 0.340

(0.112) (0.096) (0.105) (0.103)
γ3 –0.175 –0.260 –0.036 –0.076

(0.108) (0.090) (0.106) (0.128)
γ4 –0.097 –0.067 0.043 0.049

(0.104) (0.095) (0.103) (0.112)
σ 0.794 0.784 0.455 0.452

(0.065) (0.057) (0.034) (0.032)
ρ –0.923 0.999

(0.151) (0.012)
log-likelihood –173.420 –169.824 –80.584 –76.447

p-value 0.007 0.004

models.

Table 2 presents the estimation results for the two sample periods we consider.22 The

ML estimates obtained from the exogenous model with the constraint ρ = 0 imposed and

those from the endogenous model with no constraint on ρ are generally different as expected,

though the estimates for some parameters such as µ and σ are similar. The difference be-

tween the estimates from two sample periods is bigger than that from two models, exogenous

and endogenous. Especially, the estimates of µ, µ, and σ from two sample periods are quite

different, which may be used as a supporting evidence for presence of a structural break

in the US GDP series. It is also interesting to note that the ML estimate for the correla-

tion coefficient ρ measuring the degree of endogeneity for the earlier sample period is quite

large and negative, −0.923, which is drastically different from the value, 0.999, estimated

from the recent sample period.23 For the earlier sample period 1952-1984, the estimates

22Again, the standard errors are presented in parenthesis.
23Like one of our estimates for ρ in our volatility model, here we also have an extreme case. The estimated

ρ for the recent sample period is very close to 1, which suggests that the GDP growth rates evolve with the
mean regimes determined almost entirely by the shocks to themselves. As discussed, this may be spuriously
obtained by fitting a model with regime switching in mean for a process generated without any changing
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Figure 10: Estimated Transition Probabilities for Mean Model
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Notes: Figure 10 presents the transition probabilities from the mean model for the US GDP growth
rates. The left hand side graph shows the sample paths of the 17 transition probabilities of staying at
low mean state: the 16 solid time varying lines represent transition probabilities obtained from our
endogenous switching model by computing P(st = 0|st−1 = 0, st−2 = i, st−3 = j, st−4 = k, st−5 =
ℓ, yt−1, yt−2, yt−3, yt−4, yt−5) for all 16 possible combinations of i, j, k, ℓ = 0, 1, while the one red
dashed straight line represents the probability of staying at low mean state P(st = 0|st−1 = 0)
obtained from the exogenous model. In the same way, the right hand side graph shows the transition
probabilities from high to low mean state.

of α and τ in the exogenous model are 0.895 (0.077) and −1.009 (0.773), from which we

obtain the estimates for the low-to-low and high-to-high transition probabilities 0.796 and

0.901. In the endogenous model, we have 0.927 (0.041) and −0.758 (0.883) for α and τ .

On the other hand, for the recent sample period 1984-2012, the estimates for α and ρ in

the exogenous model are 0.842 (0.162) and −3.282 (1.489), which yield 0.526 and 0.981

for the low-to-low and high-to-high transition probabilities. In the endogenous model, we

have 0.809 (0.145) and −2.782 (1.144) for α and τ . Moreover, the maximum value of the

log-likelihood function from the unrestricted endogenous model is larger than that from the

restricted exogenous model with ρ = 0 imposed, and consequently the null of no endogene-

ity is decisively rejected by the usual likelihood ratio test given in (26) at 1% significance

level for both sample periods.

The estimated transition probabilities are presented in Figure 10. Since (st, yt) is jointly

a fifth-order markov process, the transition probabilities at time t depend on st−1, ..., st−5

as well as yt−1, ..., yt−5. The graph on the left hand side of Figure 10 shows the transition

probabilities from low mean state at t − 1 to low mean state at t. There are 17 lines in

the graph. The 16 solid lines represent the sample paths of the 16 transition probabilities

regimes, probabilities of this happening, we found by simulation, is to be around 10%. In fact, we obtain very
similar estimates and likelihood values, when the model is re-estimated with the restriction ρ = 1 imposed.
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obtained from our endogenous regime switching model for each of the 16 possible realizations

of the four lagged state variables, st−2, st−3, st−4, and st−5. Note that each of the four lagged

state variables st−2, st−3, st−4, and st−5 takes a value either 0 or 1, giving 16 possibilities

for their joint realizations. We therefore calculate the transition probability from low state

at t − 1 to low state at t, i.e., P(st = 0|st−1 = 0, st−2 = i, st−3 = j, st−4 = k, st−5 =

ℓ, yt−1, yt−2, yt−3, yt−4, yt−5) for all 16 possible combinations of i, j, k, ℓ = 0, 1. The one

dashed line represents the corresponding probability of staying at low mean state obtained

from the exogenous model. Similarly, the graph on the right hand side shows the sample

paths of the 17 transition probabilities from high to low mean state, 16 solid time varying

lines from the endogenous model and one dashed straight line from the exogenous model.

The most salient feature from the two figures presented in Figure 10 is that the estimated

transition probabilities estimated by our endogenous regime switching model are drastically

different from the one obtained from its exogenous counterpart. The time varying transition

probabilities estimated from our endogenous model are indeed much more sensible and

realistic.

Figure 11 presents the transition probabilities from low mean regime to low mean regime

plotted along with the US GDP growth rates. NBER announced on December 1, 2008 that

a recession began in December 2007 after the December 2007 peak which defines the turning

point from expansion to recession, and it announced on October 21, 2010 that the recession

ended in June 2009. By the time of the official announcement by NBER on December 1,

2008, everyone is presumed to know that we were in recession. Using this information, we

calculate the transition probability from low to low mean regime. The red solid line is the

corresponding transition probability from exogenous switching model. It is constant over

time. However the green solid line signifying the transition probability from our endogenous

model drastically changes over time. Note that the transition probability in our endogenous

model is determined not only by previous states but also by the lagged values of the GDP

growth rates. The endogenous switching model exploits the information from the past

values of the observed time series to update the transition probability. Therefore, when

the observed GDP growth rate is low, the transition probability from low to low regime is

as high as 100%, but this transition probability sharply declines to virtually zero when we

update our information with the high realized values of GDP growth rates.

We also extract the latent factor determining the states from our endogenous mean

switching model, and compare it with the recession periods identified by NBER. See Figure

15 in Appendix, which presents the sample path of the extracted latent mean switching

factor and NBER recession periods during the two sample periods we consider, 1952-1984

and 1984-2012. In both sample periods, we can see clearly that the trough times of the
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Figure 11: Transition Probabilities During Recent Recession Period

Notes: Figure 11 presents the transition probabilities from the mean switching model for the most
recent US recession period, 2007-2009. The shaded area indicates the recession period which started
on 2007:Q4 and ended on 2009:Q2, and the dashed vertical line marks December 1, 2008 when
NBER announced the recession began on December 2007. The solid green (red) line signifies the
low to low transition probability estimated by the endogenous (exogenous) switching model. The
dashed blue line plotted on the right vertical axis represents the US real GDP growth rates.

extracted latent factor coincide with NBER recession periods indicated by shaded areas

in the graphs. It is not surprising and indeed well expected from our model, since a low

value of the latent factor will likely result in a low mean state. Therefore we may use the

extracted latent factor from our endogenous mean switching model as a potential indicator

for business cycle.

Finally, we compute the inferred probability that we are in the recession regime, which

are presented in Figures 16-17 for both sample periods, 1952-1984 and 1984-2012. Both

endogenous and exogenous models produce high recession probabilities when the levels of

growth rates become negative. However, our endogenous model has an additional channel

via transition probabilities to reflect the changes in the observed growth rates, which its

exogenous counter part does not. The extra ability of our endogenous model to bring in

the information on the changes in the growth rates can indeed result in strikingly different

recession probabilities, which is drastically demonstrated during the late 1970’s shortly

before the 1981 recession formally announced by NBER. The GDP growth rates sharply

went up and peaked in the second quarter of 1978, and then quickly declined and became

negative in the second quarter of 1980. The transition probabilities in our endogenous model

depend on the past values of the observed growth rates, and therefore are responsive to the
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movements of the growth rages. The is why we see much higher values of the recession

probabilities computed from our endogenous model compared to those obtained from the

exogenous model during the period prior to the 1981 recession. Our model could see the

downward movements in the growth rates during this period, and accordingly increased

the recession probabilities, even before the growth rates become negative. There is no way,

however, for the exogenous model to update the recession probabilities upward even when

it was evident that the growth rates were sinking, and it has to wait until after the levels

of growth rates become negative to raise the recession probabilities.

6 Conclusions

In the paper, we propose a new regime switching model based on an autoregressive latent

factor. As we demonstrate in the paper, our approach has several clear advantages over the

conventional regime switching model. Most importantly, we may allow for endogeneity in

regime switching. The endogeneity we introduce by using our approach is well structured. It

models the effect of a shock to the observed time series in a very natural manner. In the mean

model with regime switching, the presence of endogeneity implies that the mean reversion

may occur in two different levels: one at the level of reversion of the observed time series

to its state dependent mean, and the other at the level of movement of the state dependent

mean to offset the effect of a shock. In the volatility model with regime switching, on the

other hand, the presence of endogeneity means the leverage effect. Furthermore, our regime

switching model becomes observationally equivalent to the conventional markov switching

model, if the endogeneity of regime switching is not present. Finally, our approach allows

the transition of the state process to be nonstationary and strongly persistent.

The empirical evidence for the presence of endogeneity in regime switching appears to

be very strong and unambiguous. This implies, in particular, that it is worthwhile to refit

any of the previously fitted conventional markov switching models, allowing for endogeneity

in regime switching. Our extensive simulations make it clear that neglecting endogeneity in

regime switching not only incurs a substantial bias in the estimates of model parameters,

but also does it lead to significant information loss. If endogeneity in the regime switching

is ignored, the variability of parameter estimates sharply increases and consequently the

inferred probabilities of the latent states become much less precise. This is because the en-

dogeneity in regime switching creates an important additional link between the latent states

and observed time series, and therefore, the information that can be channeled through this

link cannot be exploited if the endogeneity is ignored. The additional information that

we may extract from this new link is certainly more valuable in a markov switching model,
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since the state process playing such a critical role in the model is latent and must be inferred

from a single observable time series.
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Appendix

Appendix A: Mathematical Proofs

Proof of Lemma 2.1

From (9), we may deduce that

P

{

st = 0
∣

∣

∣wt−1

√

1− α2 = x
}

= Φ

(

τ − αx√
1− α2

)

,

from which it follows that

P
{

st = 0
∣

∣wt−1 < τ
}

= P

{

st = 0
∣

∣

∣
wt−1

√

1− α2 < τ
√

1− α2
}

=

∫ τ
√
1−α2

−∞
P

{

st = 0
∣

∣

∣wt−1

√

1− α2 = x
}

ϕ(x)dx

P

{

wt−1

√
1− α2 < τ

√
1− α2

}

=

∫ τ
√
1−α2

−∞
Φ

(

τ − αx√
1− α2

)

ϕ(x)dx

Φ
(

τ
√
1− α2

) ,
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upon noticing that wt−1

√
1− α2 =d N(0, 1). The stated result for a(α, τ) can therefore be

easily deduced from (11). Similarly, we have

P
{

st = 1
∣

∣wt−1 ≥ τ
}

= P

{

st = 1
∣

∣

∣
wt−1

√

1− α2 ≥ τ
√

1− α2
}

=

∫ ∞

τ
√
1−α2

P

{

st = 1
∣

∣

∣wt−1

√

1− α2 = x
}

ϕ(x)dx

P

{

wt−1

√
1− α2 ≥ τ

√
1− α2

}

=

∫ ∞

τ
√
1−α2

[

1− Φ

(

τ − αx√
1− α2

)]

ϕ(x)dx

1−Φ
(

τ
√
1− α2

) ,

since

P

{

st = 1
∣

∣

∣wt−1

√

1− α2 = x
}

= 1− Φ

(

τ − αx√
1− α2

)

,

due to (10), from which and (11) the stated result for b(α, τ) follows readily as above. �

Proof of Corollary 2.2

The stated result for t = 1 is obvious, since P{s0 = 0} = 1 and P{s0 = 1} = 1 depending

upon τ > 0 and τ ≤ 0. Note that we set w0 = 0 for identification when α = 1. For

t ≥ 2, upon noticing that wt−1/
√
t− 1 =d N(0, 1), the proof is entirely analogous to that of

Lemma 2.1, and the details are omitted. �

Proof of Theorem 3.1

We only provide the proof for the case of |α| < 1. The proof for the case of α = 1 is virtually

identical, except that we have wt−1/
√
t− 1 =d N(0, 1) for t ≥ 2 in this case, in place of

wt−1

√
1− α2 =d N(0, 1) for the case of |α| < 1. If we let

zt =
wt − αwt−1
√

1− ρ2
− ρ

yt−1 −mt−1

σt−1

√

1− ρ2
,

we may easily deduce that

p(zt|wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1) = N(0, 1).
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It follows that

P
{

wt < τ
∣

∣wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1

}

= P

{

zt <
τ − αwt−1
√

1− ρ2
− ρ

yt−1 −mt−1

σt−1

√

1− ρ2

∣

∣

∣

∣

∣

wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1

}

= Φρ

(

τ − ρ
yt−1 −mt−1

σt−1
− αwt−1

)

.

Note that

p(wt|wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1) = p(wt|wt−1, ut−1)

with ut−1 = (yt−1 −mt−1)/σt−1, and that wt−1 is independent of ut−1. Consequently, we

have

P
{

wt < τ
∣

∣wt−1 < τ,wt−2, . . . , wt−k−1, yt−1, . . . , yt−k−1

}

= P
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}
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=
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Φ
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)

and

P
{

wt < τ
∣

∣wt−1 ≥ τ, wt−2, . . . , wt−k−1, yt−1, . . . , yt−k−1

}

= P
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wt < τ
∣

∣
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√

1− α2 ≥ τ
√
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= P {st = 0 |st−1 = 1, st−2, . . . , st−k−1, yt−1, . . . , yt−k−1}

=
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τ
√
1−α2

Φρ
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τ − ρ
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σt−1
− αx√

1− α2
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ϕ(x)dx

1− Φ
(

τ
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1− α2

) ,

since in particular wt−1

√
1− α2 =d N(0, 1), from which the stated result for the transition

density for (st, yt) may be readily obtained.

Now we write

p(st, yt|st−1, . . . , s1, yt−1, . . . , y1)

= p(yt|st, st−1, . . . , s1, yt−1, . . . , y1)p(st|st−1, . . . , s1, yt−1, . . . , y1).
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It follows from (17) that

p(yt|st, st−1, . . . , s1, yt−1, . . . , y1) = p(yt|st, . . . st−k, yt−1, . . . , yt−k).

Moreover, we have

p(st|st−1, . . . , s1, yt−1, . . . , y1) = p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1),

as we have shown above. Therefore, it follows that

p(st, yt|st−1, . . . , s1, yt−1, . . . , y1)

= p(yt|st, . . . st−k, yt−1, . . . , yt−k)p(st|st−1, . . . , st−(k+1), yt−1, . . . , yt−k−1)

= p(st, yt|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

and (st, yt) is a (k + 1)-st order markov process. �

Proof of Corollary 3.2

We only provide the proof for the case of 0 < α < 1. The proof for the case of α = 0 is trivial

and the proof for the case of −1 < α < 0 can be easily done with a simple modification of

the case of 0 < α < 1. The proof for the case of α = 1 is virtually identical, except that we

have wt−1/
√
t− 1 =d N(0, 1) for t ≥ 2 in this case, in place of wt−1

√
1− α2 =d N(0, 1) for

the case of |α| < 1.

It follows that

P
{

wt < τ
∣

∣wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1

}

= P {αwt−1 + vt < τ |wt−1, . . . , wt−k−1, yt−1, . . . , yt−k−1}
= P {αwt−1 + ρut−1 < τ |wt−1, ut−1}

=







1, if αwt−1 + ρut−1 < τ.

0, if otherwise.
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We note that when 0 < α < 1,

ωρ(st−1 = 0, . . . , st−k−1, yt−1, . . . , yt−k−1) = P {αwt−1 + ρut−1 < τ |wt−1 < τ, ut−1}

= P
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where ut−1 = (yt−1−mt−1)/σt−1. Similarly, we have

ωρ(st−1 = 1, . . . , st−k−1, yt−1, . . . , yt−k−1) = P {αwt−1 + ρut−1 < τ |wt−1 > τ, ut−1}
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, otherwise.

Proof of Corollary 3.3

We note that

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

= p (wt|st−1 = 1, st−2, ..., st−k−1, yt−1, ..., yt−k−1)

= p (wt|wt−1 > τ, ut−1)

=

∫∞
τ p (wt, wt−1, ut−1) dwt−1
∫∞
τ p (wt−1, ut−1) dwt−1

=

∫∞
τ p (wt|wt−1, ut−1) p (wt−1) dwt−1

∫∞
τ p (wt−1) dwt−1

. (27)

The last equality comes from the independence between (wt) and (ut). Likewise, we have

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1) =

∫ τ
−∞ p (wt|wt−1, ut−1) p (wt−1) dwt−1

∫ τ
−∞ p (wt−1) dwt−1

.
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When |α| < 1 and |ρ| < 1, we have wt|wt−1, ut−1 =d N
(

αwt−1 + ρut−1, 1 − ρ2
)

. Since

wt =d wt−1 =d N
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)

, we can easily deduce
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When |α| < 1 and |ρ| = 1, we note that

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

= p (wt|st−1 = 1, st−2, ..., st−k−1, yt−1, ..., yt−k−1)

= p (wt|wt−1 > τ, ut−1)

= p (αwt−1 + vt|wt−1 > τ, vt) . (28)

Since p (wt−1|wt−1 > τ) =

√
1− α2φ

(

wt−1

√
1− α2

)

1− Φ
(

τ
√
1− α2

) , due to (28), we can easily deduce
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α φ
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α
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p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1) =

√
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α φ

(

wt−ρ
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α

√
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)

Φ
(

τ
√
1− α2

) .

When α = 1, the proofs are analogues to those of above cases except the fact that wt =d

N (0, t) and therefore omitted.
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Appendix B: Additional Figures

Figure 12: US Real GDP Growth Rates
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Notes: Figure 12 presents the US real GDP growth rates which is calculated as 100 times the change
in the log of real GDP. It is seasonally adjusted, annualized, and collected at the quarterly frequency
from 1952 to 2012. The vertical dashed red line indicates 1983:Q4.

Figure 13: Extracted Latent Factor and VIX

Notes: Figure 13 presents the sample path of the latent factor extracted from the endogenous
volatility switching model (dashed red line) along with that of the CBOE (The Chicago Board
Options Exchange) volatility index VIX (solid blue line) for the period 1990-2012, respectively, on
the left and right vertical axis.
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Figure 14: High Volatility Probabilities
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Notes: Figure 14 presents the time series of the probabilities of being in the high volatility regime.
Top panel plots the high volatility probability series obtained from the endogenous volatility switch-
ing model with red line, while the bottom panel plots those from its conventional exogenous coun-
terpart with blue line.

Figure 15: NBER Recession Periods and Extracted Latent Factor
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Notes: Figure 15 presents the latent factor determining the states extracted from the endogenous
mean switching model, which is compared with the recession periods identified by NBER. The left
hand side graph presents extracted latent factor plotted with solid red line and NBER recession
periods displayed as shaded gray areas for the sample period 1952-1984, while the graph on the
right presents those for the more recent sample period 1984-2012.
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Figure 16: Recession Probabilities During 1952-1984
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Notes: Figure 16 presents the recession probabilities for the earlier sample period, 1952-1984. Top
panel plots the recession probabilities from the endogenous mean switching model with red line,
while the bottom panel plots those from its conventional exogenous counterpart with blue line.
Both panels also show the recession periods identified by NBER.

Figure 17: Recession Probabilities During 1984-2012
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Notes: Figure 17 presents the recession probabilities for the recent sample period, 1984-2012. Top
panel plots the recession probabilities from the endogenous mean switching model with red line,
while the bottom panel plots those from its conventional exogenous counterpart with blue line.
Both panels also show the recession periods identified by NBER.


