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ABSTRACT ——————————————————————————————————–

Quantitative results from a large class of international trade models depend critically on

the elasticity of trade with respect to trade frictions. We develop a simulated method of

moments estimator to estimate this elasticity from disaggregate price and trade-flow data

using the Ricardian model. We motivate our estimator by proving that the estimator devel-

oped in Eaton and Kortum (2002) is biased in any finite sample. We quantitatively show

that the bias is severe and that the data requirements necessary to eliminate it in practice

are extreme. Applying our estimator to new disaggregate price and trade-flow data for 123

countries in the year 2004 yields a trade elasticity of roughly four, nearly fifty percent lower

than Eaton and Kortum’s (2002) approach. This difference doubles the welfare gains from

international trade.
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1. Introduction

Quantitative results from a large class of structural gravity models of international trade

depend critically on a single parameter that governs the elasticity of trade with respect to

trade frictions.1 To illustrate how important this parameter is, consider three examples:

Anderson and van Wincoop (2003) find that the estimate of the tariff equivalent of the U.S.-

Canada border varies between 48 and 19 percent, depending on the assumed elasticity of

trade with respect to trade frictions. Yi (2003) points out that observed reductions in tariffs

can explain almost all or none of the growth in world trade, depending on this elasticity.

Arkolakis, Costinot, and Rodriguez-Clare (2011) argue that this parameter is one of only two

parameters needed to measure the welfare cost of autarky in a large and important class of

trade models. Therefore, this elasticity is key to understanding the size of the frictions to

trade, the response of trade to changes in tariffs, and the welfare gains or losses from trade.

Estimating this parameter is difficult because quantitative trade models can rationalize small

trade flows with either large trade frictions and small elasticities, or small trade frictions and

large elasticities. Thus, one needs satisfactory measures of trade frictions independent of trade

flows to estimate this elasticity. Eaton and Kortum (2002) (henceforth EK) provide an inno-

vative and simple solution to this problem by arguing that, with product-level price data,

one could use the maximum price difference across goods between countries as a proxy for

bilateral trade frictions. The maximum price difference between two countries is meaningful

because it is bounded by the trade friction between the two countries via simple no-arbitrage

arguments.

We develop a new simulated method of moments estimator for the elasticity of trade in-

corporating EK’s intuition. The argument for a new estimator is that their method results

in estimates that are biased upward by economically significant magnitudes. We prove this

result and then provide quantitative measures of the bias via Monte Carlo simulations of

the EK model. Finally, we apply our estimator to novel disaggregate price and trade-flow

data for the year 2004, spanning 123 countries that account for 98 percent of world output.

Our benchmark estimate for the elasticity of trade is 4.12, rather than approximately eight,

as EK’s estimation strategy suggests. This difference doubles the measured welfare gains

from international trade across various models.

Since the elasticity of trade plays a key role in quantifying the welfare gains from trade, it is

important to understand why our estimates of the parameter differ substantially from EK’s.

1These models include Krugman (1980), Anderson and van Wincoop (2003), Eaton and Kortum (2002),
and Melitz (2003) as articulated in Chaney (2008), which all generate log-linear relationships between bilateral
trade flows and trade frictions.
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We show that the reason behind the difference is that their estimator is biased in finite sam-

ples of price data. The bias arises because the model’s equilibrium no-arbitrage conditions

imply that the maximum operator over a finite sample of prices underestimates the trade

cost with positive probability and overestimates the trade cost with zero probability. Conse-

quently, the maximum price difference lies strictly below the true trade cost, in expectation.

This implies that EK’s estimator delivers an elasticity of trade that lies strictly above the true

parameter, in expectation. As the sample size grows to infinity, EK’s estimator can uncover

the true elasticity of trade, which necessarily implies that the bias in the estimates of the

parameter is eliminated.

Quantitatively, the bias is substantial. To illustrate its severity, we discretize EK’s model,

simulate trade flows and product-level prices under an assumed elasticity of trade, and

apply their estimating approach on artificial data. Assuming a trade elasticity of 8.28, EK’s

preferred estimate for 19 OECD countries in 1990, the procedure suggests an estimate of

12.5, nearly 50-percent higher than originally postulated. Moreover, in practice, the true

parameter can be recovered when 50,000 goods are sampled across the 19 economies, which

constitutes an extreme data requirement to produce unbiased estimates of the elasticity of

trade.

Based on these arguments, we propose an estimator that is applicable when the sample

size of prices is small. Our approach builds on our insight that one can use observed bi-

lateral trade flows to recover all sufficient parameters to simulate EK’s model and obtain

trade flows and prices as functions of the parameter of interest. This insight then suggests a

simulated method of moments estimator that minimizes the distance between the moments

obtained by applying EK’s approach on real and artificial data. We explore the properties

of this estimator numerically using simulated data and show that it can uncover the true

elasticity of trade.

Applying our estimator to alternative data sets and conducting several robustness exercises

allows us to establish a range for the elasticity of trade between 2.47 and 4.42. In contrast,

EK’s approach would have found a range of 4.17 and 7.75. Thus, our method finds elastic-

ities that are roughly half the size of EK’s approach. Because the inverse of this elasticity

linearly controls changes in real income necessary to compensate a representative consumer

for going to autarky, resolving this bias doubles the welfare gains from international trade.

The elasticity of trade has been a focus of many studies; see for example the seminal works

of Feenstra (1994) and Broda and Weinstein (2006), and Anderson and van Wincoop (2004)

for a survey. Like the existing literature, our estimation approach relies on the gravity equa-

tion of trade. Unlike the literature, our paper’s methodological insight is to exploit the
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particular micro-level structure of the EK model to correct for data limitations. As we show

quantitatively, this insight is powerful and has large welfare implications.

Finally, our estimation approach would not have been possible in models without hetero-

geneous outcomes such as Krugman (1980) and the Armington model of Anderson and van

Wincoop (2003). This is an important point in light of Arkolakis, Costinot, and Rodriguez-

Clare’s (2011) arguments. While the new international trade models of EK, Melitz (2003) and

Chaney (2008) give the same formula for the welfare gains from trade as Krugman (1980)

or a simple Armington model would, their heterogenous micro-level structure enables re-

searchers to better estimate the elasticity of trade with a gravity-based estimator. Our paper

illustrates this point and thus provides an alternative rationale for the value added of new

heterogenous production models of trade.

2. Model

We outline the environment of the multi-country Ricardian model of trade introduced by

EK. We consider a world with N countries, where each country has a tradable final-goods

sector. There is a continuum of tradable goods indexed by j ∈ [0, 1].

Within each country i, there is a measure of consumers Li. Each consumer has one unit of

time supplied inelastically in the domestic labor market and enjoys the consumption of a

CES bundle of final tradable goods with elasticity of substitution ρ > 1:

Ui =

[
∫ 1

0

xi(j)
ρ−1

ρ dj

]

ρ
ρ−1

.

To produce quantity xi(j) in country i, a firm employs labor using a linear production func-

tion with productivity zi(j). Country i’s productivity is, in turn, the realization of a random

variable (drawn independently for each j) from its country-specific Fréchet probability dis-

tribution:

Fi(zi) = exp(−Tiz
−θ
i ). (1)

The country-specific parameter Ti > 0 governs the location of the distribution; higher values

of it imply that a high productivity draw for any good j is more likely. The parameter θ > 1

is common across countries and, if higher, it generates less variability in productivity across

goods.

Having drawn a particular productivity level, a perfectly competitive firm from country
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i incurs a marginal cost to produce good j of wi/zi(j), where wi is the wage rate in the

economy. Shipping the good to a destination n further requires a per-unit iceberg trade cost

of τni > 1 for n 6= i, with τii = 1. We assume that cross-border arbitrage forces effective

geographic barriers to obey the triangle inequality: For any three countries i, k, n, τni ≤

τnkτki.

Below, we describe equilibrium prices, trade flows, and welfare.

Perfect competition forces the price of good j from country i to destination n to be equal to

the marginal cost of production and delivery:

pni(j) =
τniwi

zi(j)
.

So, consumers in destination n would pay pni(j), should they decide to buy good j from

country i.

Consumers purchase good j from the low-cost supplier; thus, the actual price consumers in

n pay for good j is the minimum price across all sources k:

pn(j) = min
k=1,...,N

{

pnk(j)

}

. (2)

The pricing rule and the productivity distribution allow us to obtain the following CES exact

price index for each destination n:

Pn = γΦ
− 1

θ
n where Φn =

[

N
∑

k=1

Tk(τnkwk)
−θ

]

. (3)

In the above equation, γ =
[

Γ
(

θ+1−ρ
θ

)]

1

1−ρ is the Gamma function, and parameters are re-

stricted such that θ > ρ− 1.

To calculate trade flows between countries, let Xn be country n’s expenditure on final goods,

of which Xni is spent on goods from country i. Since there is a continuum of goods, comput-

ing the fraction of income spent on imports from i, Xni/Xn, can be shown to be equivalent

to finding the probability that country i is the low-cost supplier to country n given the joint

distribution of efficiency levels, prices, and trade costs for any good j. The expression for

the share of expenditures that country n spends on goods from country i or, as we will call

it, the trade share is:

Xni

Xn

=
Ti(τniwi)

−θ

∑N
k=1 Tk(τnkwk)−θ

. (4)
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Expressions (3) and (4) allow us to relate trade shares to trade costs and the price indices of

each trading partner via the following equation:

Xni/Xn

Xii/Xi
=

Φi

Φn
τ−θ
ni =

(

Piτni
Pn

)−θ

, (5)

where Xii

Xi
is country i’s expenditure share on goods from country i, or its home trade share.

In this model, it is easy to show that the welfare gains from trade are essentially captured

by changes in the CES price index a representative consumer faces. Because of the tight

link between prices and trade shares, this model generates the following relationship be-

tween changes in price indices and changes in home trade shares, as well as, the elasticity

parameter:

P ′
n

Pn
− 1 = 1−

(

X ′
nn/X

′
n

Xnn/Xn

)
1

θ

, (6)

where the left-hand side can be interpreted as the percentage compensation a representative

consumer in country n requires to move between two trading equilibria.

Expression (5) is not particular to EK’s model. Several popular models of international

trade relate trade shares, prices and trade costs in the same exact manner. These models

include the Armington framework of Anderson and van Wincoop (2003), as well as, the

monopolistic competition frameworks of firm heterogeneity by Melitz (2003) and Chaney

(2008), and firm homogeneity by Krugman (1980). Arkolakis, Costinot, and Rodriguez-Clare

(2011) show how equation (6) arises within these same models.

2.1. The Elasticity of Trade

The key parameter determining trade flows (equation (5)) and welfare (equation (6)) is θ. To

see the parameter’s importance for trade flows, take logs of equation (5) yielding:

log

(

Xni/Xn

Xii/Xi

)

= −θ log (τni)− θ log(Pi) + θ log(Pn). (7)

As this expression makes clear, θ controls how a change in the bilateral trade costs, τni,

will change bilateral trade between two countries. This elasticity is important because if

one wants to understand how a bilateral trade agreement will impact aggregate trade or to

simply understand the magnitude of the trade friction between two countries, then a stand

on this elasticity is necessary. This is what we mean by the elasticity of trade.
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To see the parameter’s importance for welfare, it is fairly easy to demonstrate that (6) implies

that θ represents the inverse of the elasticity of welfare with respect to domestic expenditure

shares:

log(Pn) = −
1

θ
log

(

Xnn

Xn

)

(8)

Hence, decreasing the domestic expenditure share by one percent generates (1/θ)/100-percent

increase in consumer welfare. Thus, in order to measure the impact of trade policy on wel-

fare, it is sufficient to obtain data on realized domestic expenditures and an estimate of the

elasticity of trade.

Given θ’s impact on trade flows and welfare, this elasticity is absolutely critical in any quan-

titative study of international trade.

3. Estimating θ: EK’s Approach

Equation (5) suggests that one could easily estimate θ if one had data on trade shares, ag-

gregate prices, and trade costs. The key issue is that trade costs are not observed. In this

section, we discuss how EK approximate trade costs and estimate θ. Then, we character-

ize the statistical properties of EK’s estimator. The key result is Proposition 1, which states

that their estimator is biased and overestimates the elasticity of trade with a finite sample

of prices. The second result is Proposition 2, which states that EK’s estimator is a consistent

and an asymptotically unbiased estimator of the elasticity of trade.

3.1. Approximating Trade Costs

To estimate θ, the key problem is that one must disentangle trade costs from θ, when direct

measures of trade costs are not observed. EK propose approximating trade costs in the

following way. The idea is that by using disaggregate price information across countries, the

maximum price difference between two countries bounds the trade cost and, thus, solves

the indeterminacy issue.

To illustrate this argument, suppose that we observe the price of good ℓ across locations,

but we do not know its country of origin.2 We know that the price of good ℓ in country n

2This is the most common case, though Donaldson (2009) exploits a case where he knows the place of origin
for one particular good, salt. He argues convincingly that in India, salt was produced in only a few locations
and exported everywhere; thus, the relative price of salt across locations identifies the trade friction.
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relative to country i must satisfy the following inequality:

pn(ℓ)

pi(ℓ)
≤ τni. (9)

That is, the relative price of good ℓ must be less than or equal to the trade friction. This

inequality must hold because if it does not, then pn(ℓ) > τnipi(ℓ) and an agent could import

ℓ at a lower price. Thus, the inequality in (9) places a lower bound on the trade friction.

Improvements on this bound are possible if we observe a sample of L goods across loca-

tions. This follows by noting that the maximum relative price difference must satisfy the

same inequality:

max
ℓ∈L

{

pn(ℓ)

pi(ℓ)

}

≤ τni. (10)

This suggests a way to exploit disaggregate price information across countries and to arrive

at an estimate of τni by taking the maximum of relative prices over goods. Thus, EK approx-

imate τni, in logs, by

log τ̂ni(L) = max
ℓ∈L

{log (pn(ℓ))− log (pi(ℓ))} , (11)

where the “hat” denotes the approximated value of τni and (L) indexes its dependence on

the sample size of prices.

3.2. Estimating the Elasticity

Given the approximation of trade costs, EK simply take equation (7) and run a regression.

Thus, for a sample of L goods, they essentially estimate a parameter, β, using the following

equations:

log

(

Xni/Xn

Xii/Xi

)

= −β
(

log τ̂ni(L) + log P̂i − log P̂n

)

, (12)

where log τ̂ni(L) = max
ℓ∈L

{log pn(ℓ)− log pi(ℓ)} ,

and log P̂i =
1

L

L
∑

ℓ=1

log(pi(ℓ)).
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As discussed, the second line of expression (12) approximates the trade cost. The third

line approximates the aggregate price indices. The top line relates these observables to the

regression they run.

To recover β, EK employ a method of moments estimator by taking the average of the left-

hand side of (12) divided by the average of the right-hand side of (12), with the averages

across all country pairs.3

Mathematically, their estimator is:

β̂ = −

∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)

∑

n

∑

i

(

log τ̂ni(L) + log P̂i − log P̂n

) . (13)

The value of β is EK’s preferred estimate of the elasticity θ.4 Throughout, we will denote by

β̂ the estimator defined in equation (13) to distinguish it from the value θ.

3.3. Properties of EK’s Estimator

Before proving properties of the estimator β̂, we want to be clear about the sources of ran-

domness in equation (12). We view the trade data on the left-hand side of (12) as being

fixed. The variables on the right-hand side of (12) are random variables. That is, we are

treating the micro-level prices as being randomly sampled from the equilibrium distribu-

tion of prices. The parameterization of productivity draws in equation (1), marginal cost

pricing, and equation (2) are sufficient to characterize these distributions. This interpreta-

tion is consistent with EK’s interpretation.

Given that random variation in the sampled prices is the source of randomness, we define

the following objects.

Definition 1 Define the following objects

1. Let ǫni = θ[log pn − log pi] be the log price difference of a good between country n and country

i, multiplied by θ.

2. Let the vector S = {log(T1w
−θ
1 ), . . . , log(TNw

−θ
N )}.

3They also propose two other estimators. One uses the approximation in (11) and the gravity equation in
(22) — our arguments are applicable to this approach as well. The other approach does not use disaggregate
price data and this estimate is remarkably similar to our benchmark results.

4To alleviate measurement error, they resort to using the second-order statistic over price differences rather
than the first-order statistic. Our estimation approach is robust to the consideration of using the first- or
second-order statistic.
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3. Let the vector τ̃i = {θ log(τi1), . . . , θ log(τiN)} and let τ̃ be a matrix with typical row, τ̃i.

4. Let g(pi; S, τ̃i) be the pdf of prices of individual goods in country i, pi ∈ (0,∞).

5. Let fmax(ǫni;L, S, τ̃i, τ̃n) be the pdf of max(ǫni), given prices of a sample L ≥ 1 of goods.

6. Let X denote the normalized trade share matrix, with typical (n, i) element, log
(

Xni/Xn

Xii/Xi

)

.

The first item is simply the scaled log price difference. As we show in Appendix B.1, this

happens to be convenient to work with, as the second line in (12) can be restated in terms

of scaled log price differences across locations. The second item is a vector in which each

element is a function of a country’s technology parameter and wage rate. The third item

is a matrix of log bilateral trade costs, scaled by θ, with a typical vector row containing the

trade costs that country i’s trading partners incur to sell there. The fourth item specifies

the probability distribution of prices in each country. The fifth item specifies the probability

distribution over the maximum scaled log price difference and its dependence on the sample

size of prices of L goods. We derive this distribution in Appendix B.1. Finally, the sixth item

summarizes trade data, which we view as constant.

3.4. β̂ is a Biased Estimator of θ

Given these definitions, we establish two intermediate results and then state Proposition 1,

which characterizes the expectation of β̂, shows that the estimator is biased and discusses

the reason why the bias arises. The proof of Proposition 1 can be found in Appendix B.1.

The first intermediate result is the following:

Lemma 1 Consider an economy of N countries with a sample of L goods’ prices observed. The

expected value of the maximal difference of logged prices for a pair of countries is strictly less than

the true trade cost,

Ψni(L; S, τ̃i, τ̃n) ≡
1

θ

∫ θ log(τni)

−θ log(τin)

ǫnifmax(ǫni;L, S, τ̃i, τ̃n)dǫni < log(τni). (14)

The difference in the expected values of logged prices for a pair of countries equals the difference in

the price parameters, Φ, of the two countries,

Ωni(S, τ̃n, τ̃i) ≡

∫ ∞

0

log(pn)g(pn; S, τ̃n)dpn −

∫ ∞

0

log(pi)g(pi; S, τ̃i)dpi =
1

θ
(log Φi − log Φn) ,

(15)

with Φn defined in equation (3).
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The key result in Lemma 1 is the strict inequality in (14). It says that Ψni, the expected maxi-

mal logged price difference, is less than the true trade cost. Two forces drive this result. First,

with a finite sample L of prices, there is positive probability that the maximal logged price

difference will be less than the true trade cost. In other words, there is always a chance that

the weak inequality in (10) does not bind. Second, there is zero probability that the maximal

logged price difference can be larger than the true trade cost. This comes from optimality

and the definition of equilibrium. These two forces imply that the expected maximal logged

price difference lies strictly below the true trade cost.

The second result in Lemma 1 is that the difference in the expected log prices in expression

(15) equals the difference in the aggregate price parameters defined in equation (3). This

result is important because it implies that any source of bias in the estimator β̂ does not

arise because of systematic errors in approximating the price parameter Φn.

The next intermediate step computes the expected value of 1/β̂. This step is convenient

because the inverse of β̂ is linear in the random variables that Lemma 1 characterizes.

Lemma 2 Consider an economy of N countries with a sample of L goods’ prices observed. The

expected value of 1/β̂ equals:

E

(

1

β̂

)

=
1

θ







−

∑

n

∑

i(θΨni(L)− (log Φi − log Φn))
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)







<
1

θ
, (16)

with

1 >







−

∑

n

∑

i(θΨni(L)− (log Φi − log Φn))
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)







> 0. (17)

This results says that the expected value of the inverse of β̂ equals the inverse of the elasticity

multiplied by the bracketed term of (17). The bracketed term is the expected maximal logged

price difference minus the difference in expected logged prices, both scaled by theta, and

divided by trade data. This term is strictly less than one because Ψni does not equal the

trade cost, as established in Lemma 1. If Ψni did equal the trade cost, then the bracketed

term would equal one, and the expected value of the inverse of β̂ would be equal to the

inverse of θ. This can be seen by examining the relation between Φs and aggregate prices P s

in (3), and by substituting expression (7) into (17).

Inverting (16) and then applying Jensen’s inequality establishes the main result: that EK’s

estimator is biased above the true value of θ.
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Proposition 1 Consider an economy of N countries with a sample of L goods’ prices observed. The

expected value of β̂ is

E
(

β̂
)

≥ θ ×







−

∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)

∑

n

∑

i(θΨni(L)− (log Φi − log Φn))







> θ. (18)

The proposition establishes that the estimator β̂ provides estimates that exceed the true

value of the elasticity θ. The weak inequality in (18) comes from applying Jensen’s inequal-

ity to the strictly convex function of β̂, 1/β̂. The strict inequality follows from Lemma 1,

which argued that the expected maximal logged price difference is strictly less than the true

trade cost. Thus, the bracketed term in expression (18) is always greater than one and the

elasticity of trade is always overestimated.

3.5. Consistency and Asymptotic Bias

While the estimator β̂ is biased in a finite sample, the asymptotic properties of EK’s estimator

are worth understanding. Proposition 2 summarizes the result. The proof to Proposition 2

can be found in Appendix B.2.

Proposition 2 Consider an economy of N countries. The maximal log price difference is a consistent

estimator of the trade cost,

plim
L→∞

max
ℓ=1,...,L

(log pn(ℓ)− log pi(ℓ)) = log τni. (19)

The estimator β̂ is a consistent estimator of θ,

plim
L→∞

β̂ (L; S, τ̃ ,X) = θ, (20)

and the asymptotic bias of β̂ is zero,

lim
L→∞

E
[

β̂ (L; S, τ̃ ,X)
]

− θ = 0. (21)

There are three elements to Proposition 2, each building on the previous one. The first

statement says that the probability limit of the maximal log price difference equals the true

trade cost between two countries. Intuitively, this says that as the sample size becomes large,

the probability that the weak inequality in (10) does not bind becomes vanishingly small.
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The second statement says that the estimator β̂ converges in probability to the elasticity

of trade—i.e., β̂ is a consistent estimator of θ. The reasons are the following. Because the

maximal price difference converges in probability to the true trade cost, and the difference

in averages of log prices converges in probability to the difference in price parameters, 1/β̂

converges in probability to 1/θ. Since 1/β̂ is a continuous function of β̂ (with β̂ > 0), β̂

must converge in probability to θ because of the preservation of convergence for continuous

functions (see Hayashi (2000)).

The third statement says that, in the limit, the bias is eliminated. This follows immediately

from the argument that β̂ is a consistent estimator of θ (see Hayashi (2000)).

The results in Proposition 2 are important for two reasons. First, they suggest that with

enough data, EK’s estimator provides informative estimates of the elasticity of trade. How-

ever, as we will show in the next section, Monte Carlo exercises suggest that the data require-

ments are extreme. Second, because EK’s estimator has desirable asymptotic properties, it

underlies the simulation-based estimator that we develop in Section 5.

4. How Large is the Bias? How Much Data is Needed?

Proposition 1 shows EK’s estimator is biased in a finite sample. Many estimators have this

property, which raises the question: How large is the bias? Furthermore, even if the mag-

nitude of the bias is large, perhaps only moderate increases in the sample size are sufficient

to eliminate the bias (in practical terms). The natural question is then: How much data is

needed to achieve that?

To answer these questions, we perform Monte Carlo experiments in which we simulate

trade flows and samples of micro-level prices under a known θ. Then, we apply EK’s esti-

mator to the artificial data. We employ the same simulation procedure described in Steps 1-3

in Section 5.2 and we estimate all parameters (except for θ) using the trade data from EK. We

set the true value of θ equal to 8.28, which is EK’s estimate when employing the approach

described above. The sample size of prices is set to L = 50, which is the number of prices

EK had access to in their data set.

Table 1 presents the findings. The columns of Table 1 present the mean and median es-

timates of β over 100 simulations. The rows present two different estimation approaches:

method of moments and least squares with suppressed constant. Also reported are the true

average trade cost and the estimated average trade cost using maximal log price differences.

The first row in Table 1 shows that the estimates using EK’s approach are larger than the

12



Table 1: Monte Carlo Results, True θ = 8.28

Approach Mean Estimate of θ (S.E.) Median Estimate of θ

EK’s Estimator 12.5 (0.06) 12.5

Least Squares 11.8 (0.06) 11.8

True Mean τ = 1.79 Estimated Mean τ = 1.48

Note: S.E. is the standard error of the mean. In each simulation there are 19 countries and
500,000 goods. Only 50 realized prices are randomly sampled and used to estimate θ. 100
simulations performed.

true θ of 8.28, which is consistent with Proposition 1. The key source of bias in Proposition

1 was that the estimates of the trade costs were biased downward, as Lemma 1 argued. The

final row in Table 1 illustrates that the estimated trade costs are below the true trade costs,

where the latter correspond to an economy characterized by a true elasticity of trade among

19 OECD countries of 8.28.

The second row in Table 1 reports results using a least squares estimator with the constant

suppressed rather than the method of moments estimator.5 Similar to the method of mo-

ments estimates, the least squares estimates are substantially larger than the true value of

θ. This is important because it suggests that the key problem with EK’s approach is not the

method of moment estimator per se, but, instead, the poor approximation of the trade costs.

The final point to note is that the magnitude of the bias is substantial. The underlying θ was

set equal to 8.28, and the estimates in the simulation are between 11.8 and 12.5. Equation (8)

can be used to formulate the welfare cost of the bias. It suggests that the welfare gains from

trade will be underestimated by 50 percent as a result of the bias.

How much data is needed to eliminate the bias? Table 2 provides a quantitative answer. It

performs the same Monte Carlo experiments described above, as the sample size of micro-

level prices varies.

Table 2 shows that, as the sample size becomes larger, the estimate of θ becomes less biased

and begins to approach the true value of θ. The final column shows how the reduction

in the bias coincides with the estimates of the trade costs becoming less biased. This is

consistent with the arguments of Proposition 2, which describes the asymptotic properties

5Including a constant in least squares results in slope coefficient that underestimate the true elasticity. This
result is symptomatic of an “errors in variables” problem.
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Table 2: Increasing the Sample of Prices Reduces the Bias, True θ = 8.28

Sample Size of Prices Mean θ (S.E.) Median θ Mean τ

50 12.51 (0.06) 12.50 1.48

500 9.34 (0.02) 9.32 1.68

5,000 8.43 (0.01) 8.43 1.77

50,000 8.30 (0.002) 8.30 1.78

Note: S.E. is the standard error of the mean. In each simulation, there are 19 countries and
500,000 goods. The results reported use least squares with the constant suppressed. 100 simu-
lations performed. True Mean τ = 1.79.

of this estimator.

We should note that the rate of convergence is extremely slow; even with a sample size of

5,000, the estimate of β is meaningfully larger than the value generating the data. Only when

50,000 prices are sampled does the estimate approach the true value. This exercise allows

us to conclude that the data requirements to minimize the bias in estimates of the elasticity

of trade (in practice) are extreme. This motivates our alternative estimation strategy in the

next section.

5. A New Approach To Estimating θ

In this section, we develop a new approach to estimating θ and discuss its performance on

simulated data.

5.1. The Idea

Our idea is to exploit the structure of the model in the following way. First, in Section 5.2,

we show how to recover all parameters necessary to simulate the model up to the unknown

scalar θ from trade data only. These parameters are the vector S and the scaled trade costs

in matrix τ̃ . Given these values, we can simulate moments from the model as functions of θ.

Second, Lemma 1 and Lemma 2 actually suggest which moments are informative. Inspec-

tion of the integral (14) and the density fmax in (b.28) leads to the observation that the ex-

pected maximal log price difference monotonically varies with θ and linearly with 1/θ. This

follows because of the previous point—the vector S and scaled log trade costs τ̃ are pinned

down by trade data, and these values completely determine all parameters in the integral
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(14), except the value 1/θ lying outside the integral. Similarly, the integral (15) is completely

determined by these values and scaled in the same way by 1/θ as (14) is.

These observations have the following implication. While the maximum log price difference

is biased below the true trade cost, if θ is large, then the value of the maximum log price

difference will be small. Similarly, if θ is small, then the value of the maximum log price

difference will be large. A large or small maximum log price difference will result in a small

or large estimate of β̂. This suggests that the estimator β̂ will vary monotonically with the

true value of θ. Furthermore, this suggests that β̂ is an informative moment with regard to

θ.6
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Figure 1: Schematic of Estimation Approach

Figure 1 quantitatively illustrates this intuition by plotting β(θ) from simulations as we

varied θ. It is clear that β is a biased estimator because these values do not lie on the 45o line.

However, β varies near linearly with θ. These observations suggest an estimation procedure

that matches the data moment β to the moment β(θ) implied by the simulated model under

a known θ.7 Because of the monotonicity implied by our arguments, the known θ must be

the unique value that satisfies the moment condition specified.

6While we have not shown this formally, it can be shown that the expected value of 1/β̂ is proportional to

1/θ. Modulo effects from Jensen’s inequality, this suggests that β̂ is proportional to θ. Figure 1 confirms this.
7Another reason for using the moment β is that it is a consistent estimator of θ, as argued in Proposition 2.
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5.2. Simulation Approach

We show how to recover all parameters of interest up to the unknown scalar θ from trade

data only, and then we describe our simulation approach. This provides the foundations for

the simulated method of moments estimator we propose.

Step 1.—We estimate parameters for the country-specific productivity distributions and

trade costs from bilateral trade-flow data. We perform this step by following EK and Waugh

(2010b) and deriving the gravity equation from expression (4), by dividing the bilateral trade

share by the importing country’s home trade share,

log

(

Xni/Xn

Xnn/Xn

)

= Si − Sn − θ log τni, (22)

where Si is defined as log
[

Tiw
−θ
i

]

and is the same value in the parameter vector S in Defi-

nition 1. Note that this is a different equation than expression (5), which is derived by di-

viding the bilateral trade share by the exporting country’s home trade share, and is used to

estimate θ. Sis are recovered as the coefficients on country-specific dummy variables given

the restrictions on how trade costs can covary across countries. Following the arguments of

Waugh (2010b), trade costs take the following functional form:

log(τni) = dk + bni + exi + νni. (23)

Here, trade costs are a logarithmic function of distance, where dk with k = 1, 2, ..., 6 is the

effect of distance between country i and n lying in the kth distance intervals.8 bni is the effect

of a shared border in which bni = 1, if country i and n share a border and zero otherwise. The

term exi is an exporter fixed effect and allows for the trade-cost level to vary depending upon

the exporter. We assume that νni reflects other factors and is orthogonal to the regressors

and normally distributed with mean zero and standard deviation σν . We use least squares

to estimate equations (22) and (23).

Step 2.—The parameter estimates obtained from the first-stage gravity regression are suffi-

cient to simulate trade flows and micro-level prices up to a constant, θ.

The relationship is obvious in the estimation of trade barriers since log(τni) is scaled by θ in

(22). To see that we can simulate micro-level prices as a function of θ only, notice that for

any good j, pni(j) = τniwi/zi(j). Thus, rather than simulating productivities, it is sufficient

8Intervals are in miles: [0, 375); [375, 750); [750, 1500); [1500, 3000); [3000, 6000); and [6000,maximum]. An
alternative to specifying a trade-cost function is to recover scaled trade costs as a residual using equation (5),
trade data, and measures of aggregate prices as in Waugh (2010a).
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to simulate the inverse of marginal costs of production ui(j) = zi(j)/wi. In Appendix B.3,

we show that ui is distributed according to:

Mi(ui) = exp
(

−S̃iu
−θ
i

)

, with S̃i = exp(Si) = Tiw
−θ
i . (24)

Thus, having obtained the coefficients Si from the first-stage gravity regression, we can sim-

ulate the inverse of marginal costs and prices.

To simulate the model, we assume that there are a large number (150,000) of potentially trad-

able goods. In Section 8.1, we discuss how we made this choice and the motivation behind

it. For each country, the inverse marginal costs are drawn from the country-specific distri-

bution (24) and assigned to each good. Then, for each importing country and each good,

the low-cost supplier across countries is found, realized prices are recorded, and aggregate

bilateral trade shares are computed.

Step 3.—From the realized prices, a subset of goods common to all countries is defined and

the subsample of prices is recorded – i.e., we are acting as if we were collecting prices for

the international organization that collects the data. We added disturbances to the predicted

trade shares with the disturbances drawn from a mean zero normal distribution with the

standard deviation set equal to the standard deviation of the residuals from Step 1.

These steps then provide us with an artificial data set of micro-level prices and trade shares

mimicking their analogs in the data. Given this artificial data set, we can then compute

moments—as a function of θ—to compare to moments in the data.

5.3. Estimation

Below, we describe the moments we try to match and the formalities of our estimation pro-

cedure.

5.3.1. Moments

In this section, we define the moments of interest. We perform two estimations: one overi-

dentified procedure with two moments and an exactly identified procedure with one mo-

ment.

Define βk as EK’s method of moment estimator defined in (12) using the kth-order statistic
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over micro-level price differences. Then, the moments we are interested in are:

βk = −

∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)

∑

n

∑

i

(

log τ̂kni(L) + log P̂i − log P̂n

) , k = 1, 2 (25)

where τ̂kni(L) is computed as the kth-order statistic over L micro-level price differences be-

tween countries n and i. In the exactly identified estimation, we use β1 as the only moment.

We denote the simulated moments by β1(θ, us) and β2(θ, us), which come from the analo-

gous formula as in (25) and are estimated from artificial data generated by following Steps

1-3 above. Note that these moments are a function of θ and depend upon a vector of ran-

dom variables us associated with a particular simulation s. There are three components

to this vector. First, there are the random productivity draws for production technologies

for each good and each country. The second component is the set of goods sampled from

all countries. The third component mimics the residuals νni from equation (22), which are

described in Section 5.2.

Stacking our data moments and averaged simulation moments gives us the following zero

function:

y(θ) =







β1 −
1
S

∑S
s=1 β1(θ, us)

β2 −
1
S

∑S
s=1 β2(θ, us)






. (26)

5.3.2. Estimation Procedure

We base our estimation procedure on the moment condition:

E [y(θo)] = 0,

where θo is the true value of θ. Thus, our simulated method of moments estimator is

θ̂ = argmin
θ

[y(θ)′ W y(θ)] , (27)

where W is a 2× 2 weighting matrix that we discuss below.

The idea behind this moment condition is that, though β1 and β2 will be biased away from

θ, the moments β1(θ, us) and β2(θ, us) will be biased by the same amount when evaluated

at θo, in expectation. Viewed in this language, our moment condition is closely related to

the estimation of bias functions discussed in MacKinnon and Smith (1998) and to indirect
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inference, as discussed in Smith (2008). The key issue in MacKinnon and Smith (1998) is

how the bias function behaves. As we argued in Section 5.1, the bias is monotonic in the

parameter of interest and Figure 1 shows that it is basically linear and, thus, is well behaved.

For the weighting matrix, we use the optimal weighting matrix suggested by Gouriéroux

and Monfort (1996) for simulated method of moments estimators. Because the weighting

matrix depends upon our estimate of θ, we used a standard iterative procedure outlined in

the next steps.

Step 4.—We make an initial guess of the weighting matrix W0 and solve for θ̂0. Then, given

this value we simulate the model to generate a new estimate of the weighting matrix.9 With

the new estimate of the weighting matrix we then solve for a new θ̂1. We perform this

iterative procedure until our estimates of the weighting matrix and θ̂ converge. We explicitly

consider simulation error because we utilize the weighting matrix suggested by Gouriéroux

and Monfort (1996).

Step 5.—We compute standard errors using a bootstrap technique. We compute residu-

als implied by the estimator in (25) and the fitted values, we resample the residuals with

replacement, and we generate a new set of data using the fitted values. Using the data

constructed from each resampling b, we computed new estimates βb
1 and βb

2.

For each bootstrap b, we replace the moments β1 and β2 with bootstrap-generated moments

βb
1 and βb

2. To account for simulation error, a new seed is set to generate a new set of model-

generated moments. Defining yb(θ) as the difference in moments for each b, as in (26), we

solve for:

θ̂b = argmin
θ

[

yb(θ)′ W yb(θ)
]

. (28)

We repeat this exercise 100 times and compute the estimated standard error of our estimate

of θ̂ as:

S.E.(θ̂) =

[

1

100

100
∑

b=1

(θ̂b − θ̂)(θ̂b − θ̂)′

]
1

2

. (29)

This procedure for constructing standard errors is similar in spirit to the approach of Eaton,

Kortum, and Kramarz (2011), who use a simulated method of moments estimator to esti-

mate the parameters of a similar trade model from the performance of French exporters.

9The computation of this matrix is described in Gouriéroux and Monfort (1996).
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5.4. Performance on Simulated Data

In this section, we evaluate the performance of our estimation approach using simulated

data when we know the true value of θ.

Table 3 presents the results from the following exercise. We generate an artificial data set of

trade flows and disaggregate prices with true value of θ equal to 8.28 and 4.00, and then we

apply our estimation routine.10 We repeat this procedure 100 times. Table 3 reports average

estimates. The sequence of artificial data is the same for both the overidentified case and

exactly identified case to facilitate comparisons across estimators.

The first row presents the average value of our simulated method of moments estimate,

which is 8.29 with a standard error of 0.03. For all practical purposes, the estimation routine

recovers the true value of θ generating the data. To emphasize our estimator’s performance,

the next two rows of Table 3 present the approach of EK (which also corresponds to the

moments used). Though not surprising given the discussion above, this approach generates

estimates of θ that are significantly (in both their statistical and economic meaning) higher

than the true value of θ of 8.28.

Table 3: Estimation Results With Artificial Data

Estimation Approach True θ = 8.28 True θ = 4.00

Overidentified Mean Estimate of θ (S.E.) Mean Estimate of θ (S.E.)

SMM 8.29 (0.03) 3.99 (0.02)

Moment, β1 12.47 (0.05) 6.03 (0.03)

Moment, β2 15.20 (0.05) 7.34 (0.03)

Exactly Identified

SMM 8.24 (0.04) 3.98 (0.02)

Moment, β1 12.47 (0.05) 6.03 (0.03)

Note: In each simulation there are 19 countries, 150,000 goods and 100 simulations performed. The
sequence of artificial data is the same for both the overidentified case and exactly identified case.

The final two rows present the exactly identified case when we use only one moment to

estimate θ. In this case, we use β1. Similar to the overidentified case, the average value of

our simulated method of moments estimate is 8.24 with a standard error of 0.04. Again, this

is effectively the true value of θ.

10To generate the artificial data set, we employ the same simulation procedure described in Steps 1-3 in
Section 5.2 using the trade data from EK.
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Table 4: Comparison to Alternative Statistical Approaches to Bias Reduction

True θ = 8.28 True θ = 4.00

Estimation Approach Mean Estimate of θ (S.E.) Mean Estimate of θ (S.E.)

SMM 8.29 (0.03) 3.99 (0.02)

Robson and Whitlock (1964) 10.54 (0.07) 5.11 (0.03)

Moment, β1 12.47 (0.05) 6.03 (0.03)

Note: In each simulation there are 19 countries, 150,000 goods and 100 simulations performed. The se-
quence of artificial data is the same for all cases.

The second column reports the results when the true value of θ is set equal to 4.00. The esti-

mates using our estimator are 3.99 and 3.98 in the overidentified and the exactly identified

case, respectively. Similar to the previous results, these values are effectively the true value

of θ. Furthermore, the alternative approaches that correspond to the moments we used in

our estimation are biased away from the true value of θ.

We also compare our estimation approach to an alternative statistical approach to bias re-

duction, which does not depend on the model’s explicit distributional assumptions. Robson

and Whitlock (1964) propose a way to reduce the bias when estimating the truncation point

of a distribution. This problem is analogous to estimating the trade cost from price differ-

ences. This can be seen by inspecting the integral in (14) of Lemma 1. Robson and Whitlock’s

(1964) approach would suggest (in our notation) an estimator of the trade cost of 2τ̂ 1ni − τ̂ 2ni,

or two times the first-order statistic minus the second-order statistic. This makes intuitive

sense because it increases the first-order statistic by the difference between the first- and

second-order statistic. They show that this estimator is as efficient as the first-order statistic

but with less bias.11

We follow their approach to approximate the trade friction and then use it as an input into

the simple method of moments estimator. We compare the results from this estimation pro-

cedure to the results obtained using our SMM estimator. Table 4 presents the results. The

second row reports the results when using Robson and Whitlock’s (1964) approach to re-

duce the bias in the estimator of the trade friction. This approach reduces the bias relative to

using the first-order statistic (EK’s approach) reported in the third row. It is not, however, a

complete solution, as the estimates are still meaningfully higher than both the true value of θ

and the estimates from our estimation approach. This suggests that exploiting the structure

11Robson and Whitlock (1964) provide more-general refinements using inner-order statistics, but methods
using inner-order statistics will have very low efficiency. Cooke (1979) provides an alternative bias reduction
technique but only considers cases in which the sample size (L in our notation) is large.
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of the model has content because it outperforms a naive statistical procedure.

Overall, we view these results as evidence supporting our estimation approach and empir-

ical estimates of θ presented in Section 6 below.

6. Empirical Results

In this section, we apply our estimation strategy described in section 5 to several different

data sets. The key finding of this section is that our estimation approach yields an estimate

around four, in contrast to previous estimation strategies, which yield estimates around

eight.

6.1. Baseline Results Using New ICP 2005 Data

6.1.1. New ICP 2005 Data

Our sample contains 123 countries. We use trade flows and production data for the year

2004 to construct trade shares. The price data used to compute aggregate price indices and

proxies for trade costs come from basic-heading-level data from the 2005 round of the Inter-

national Comparison Programme (ICP). The ICP collects price data on goods with identical

characteristics across retail locations in the participating countries during the 2003-2005 pe-

riod.12 The basic-heading level represents a narrowly-defined group of goods for which

expenditure data are available. The data set contains a total of 129 basic headings, and we

reduce the sample to 62 categories based on their correspondence with the trade data em-

ployed. Appendix A.2 provides more details.

On its own, this data set provides two contributions to the existing literature. First, because

this is the latest round of the ICP, the measurement issues are less severe than in previous

rounds. Furthermore, this data set provides very extensive coverage, as it includes as many

as 123 developing and developed countries that account for 98 percent of world output.

The ICP provides a common list of “representative” goods whose prices are to be randomly

sampled in each country over a certain period of time. A good is representative of a coun-

try if it comprises a significant share of a typical consumer’s bundle there. Thus, the ICP

samples the prices of a common basket of goods across countries, where the goods have

been pre-selected due to their highly informative content for the purpose of international

comparisons.

12The ICP Methodological Handbook is available at http://go.worldbank.org/MW520NNFK0.
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EK’s model gives a natural common basket of goods to be priced across countries. In this

model, the agents in all countries consume all goods that lie within a fixed interval, [0, 1].

Thus, we consider this common list in the simulated model and randomly sample the prices

of its goods across countries, in order to approximate trade barriers, much like it is done in

the ICP data.

6.1.2. Results—New ICP 2005 Data

Table 5 presents the results.13 The first row simply reports the moments that our estimation

procedure targets. As discussed, these values correspond with EK’s estimate of θ.

Table 5: Estimation Results With 2005 ICP Data

Estimate of θ (S.E.) β1 β2

Data Moments — 7.75 9.61

Exactly Identified Case 4.12 (0.02) 7.75 —

Overidentified Case 4.06 (0.01) 7.65 9.62

The second row reports the results for exactly identified estimation, where the underlying

moment used is β1. In this instance, our estimate of θ is 4.12, roughly half of EK’s estimate

of θ.

The third row reports the results for the overidentified estimation. The estimate of θ is 4.06—

almost the same as in our exactly identified estimation and, again, roughly half of EK’s

estimate. The second and third columns report the resulting moments from the estimation

routine, which are close to the data moments targeted, given that only one parameter is used

to match two moments.

6.2. Estimates Using EK’s Data

In this section, we apply our estimation strategy to the same data used in EK as another

check of our estimation procedure. Their data set consists of bilateral trade data for 19

OECD countries in 1990 and 50 prices of manufactured goods for all countries. The prices

come from an earlier round of the ICP, which considered only OECD countries. Similar

13The results from the Step 1 gravity regressions are presented in Table 9 and Table 12.
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to our data, the price data are at the basic-heading level and are for goods with identical

characteristics across retail locations in the participating countries.

6.2.1. Results—EK’s Data

Table 6 presents the results.14 The first row simply reports the moments that our estimation

procedure targets. The entry in the third column corresponds with β2, which is EK’s baseline

estimate of θ.

Table 6: Estimation Results With EK’s Data

Estimate of θ (S.E.) β1 β2

Data Moments — 5.93 8.28

Exactly Identified Case 3.93 (0.09) 5.93 —

Overidentified Case 4.42 (0.06) 6.64 8.10

The second row reports the results for exactly identified estimation, where the underlying

moment used is β1. In this instance, our estimate of θ is 3.93, which is, again, roughly half of

EK’s estimate of θ. The standard error of our estimate is fairly tight.

The third row reports the results for the overidentified estimation. Here, our estimate of θ

is 4.42. Again, this is substantially below EK’s estimate. Unlike our results in Table 5 with

newer data, the overidentified case seems to be giving a different value than the exactly

identified case gives. This contrasts with the Monte Carlo evidence, which suggests that

the estimation procedure should not deliver very different estimates. Furthermore, compar-

ing the data moments in the top row versus the implied moments in the second and third

columns of the third row suggests that the estimation routine is facing challenges fitting the

observed moments. We view this as pointing towards a problem with measurement error in

the data, as EK suggested.

6.3. Discussion

Our estimation results compare favorably with alternative estimates of θ that do not use the

max over price data to approximate trade costs. For example, estimates of θ using firm-level

14The results from the Step 1 gravity regressions are presented in Table 10 and Table 12.
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data, as in Bernard, Eaton, Jensen, and Kortum (2003) and Eaton, Kortum, and Kramarz

(2011), are in the range of 3.6 to 4.8—exactly in the range of values we find. EK provide an

alternative estimate of θ using wage data and find a value of 3.6. Burstein and Vogel (2009)

estimate θ matching moments regarding the skill intensity of trade and find a value of five.

Simonovska (2010) uses a non-homothetic model of trade featuring variable mark-ups and

calibrates θ to a level of 3.8, which allows her model to match average mark-ups in OECD

countries.

Donaldson (2009) estimates θ as well, and his approach is illuminating relative to the issues

we have raised. His strategy for approximating trade costs is to study differences in the

price of salt across locations in India. In principle, his approach is subject to our critique,

as well—i.e., how could price differences in one good be informative about trade frictions?

However, he argues convincingly that in India, salt was produced in only a few locations

and exported everywhere. Thus, by examining salt, Donaldson (2009) finds a “binding”

good. Using this approach, he finds estimates in the range of 3.8-5.2, again consistent with

the range of our estimates of θ.

Finally, it should be noted that the elasticity of trade, θ, is closely related to the elasticity

of substitution between foreign and domestic goods, the Armington elasticity, which deter-

mines the behavior between trade flows and relative prices across a large class of models.

Ruhl (2008) presents a comprehensive discussion of the puzzle regarding this elasticity. In

particular, he argues that international real business-cycle models need low elasticities, in

the range of one to two, to match the quarterly fluctuations in trade balances and the terms

of trade, but static applied general-equilibrium models need high elasticities, between ten

and 15, to account for the growth in trade following trade liberalization. Recently, Imbs and

Mejean (2010) estimate import and export price elasticities for 28 countries within a range of

three to five. Moreover, using very disaggregate data, Feenstra, Obstfeld, and Russ (2010),

Romalis (2007), Broda and Weinstein (2006), and Hummels (2001) provide estimates for the

Armington elasticity parameter across a large number of industries. Feenstra, Obstfeld, and

Russ’s (2010) median estimate is 4.4; Romalis’s (2007) estimates range between four and 13,

Hummels’s (2001) estimates range between three and eight; while the most comprehensive

work of Broda and Weinstein (2006), who provide tens of thousands of elasticities using

ten-digit HS US data, results in a median value of 3.10.

Given our estimates of θ, it is straightforward to back out the Armington elasticity ρ within

the context of the model of Anderson and van Wincoop (2004), where ρ = θ + 1. Using our

estimates of the elasticity of trade, the implied Armington elasticity ranges between 4.93

and 5.42. This utility parameter also appears in the heterogeneous firm framework of Melitz

(2003) parameterized by Chaney (2008). Together with the elasticity of trade, θ, the utility
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parameter governs the distribution of firm sales arising from the model, which has Pareto

tails with a slope given by θ/(ρ − 1). Luttmer (2007) discusses firm-level evidence that this

slope takes on the value of 1.65, which given our estimates of θ, provides the range of 3.38-

3.68 for ρ. Hence, the Armington elasticity implied by our estimates ranges between 3.38

and 5.42, which falls within the low end of the ranges of estimates of existing studies. Thus,

our results close the gap between (implied) estimates of the elasticity of trade stemming

from a rich demand structure and the ones obtained from the general-equilibrium structure

of a Ricardian model of trade.

7. Why Estimates of θ Matter: The Welfare Gains From Trade

The elasticity parameter θ is key in measuring the welfare gains from trade across a large

class of models. In section 2.1, we argued that θ−1 represents the elasticity of welfare with

respect to trade. Recall expression (6), reproduced below for convenience:

log(Pn) = −
1

θ
log

(

Xnn

Xn

)

Consider a trade liberalization episode that results in a one-percent fall in domestic expendi-

ture share, generating (1/θ)/100 percent increase in consumer welfare. Using the estimates

for θ obtained from the original procedure and the improved simulated method of moments

procedure, roughly eight and four, respectively, the welfare gains from trade would be mis-

measured by a hundred percent. Namely, an estimate for θ of eight would generate a 0.125-

percent welfare increase for a percent fall in the domestic share, while an estimate of four

suggests a 0.25-percent welfare gain from trade, twice as high as the original calculation.

These differences illustrate the importance of obtaining better estimates of trade elasticity.

8. Robustness

8.1. The Number of Goods

The estimation routine requires us to take a stand on the number of goods in the economy.

We argue that the appropriate way to view this issue is to ask: how many goods are needed

to numerically approximate the infinite number of goods in the model? Thus, the number

of goods chosen should be judged on the accuracy of the approximation relative to the com-

putational cost. The choice of the number of goods should not be judged on the basis of how

many goods actually exist in the “real world” because this value is impossible to know or
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discipline.

To understand our argument, recall that our estimation routine is based on a moment con-

dition that compares a biased estimate from the data with a biased estimate using artificial

data. In Section 3.4, we argued that the bias depends largely on the expected value of the

max over a finite sample of price differences—i.e., the integral of the left-hand side of equa-

tion (14). Thus, when we compute the biased estimate using artificial data, we are effectively

computing this integral via simulation.15 This suggests that the number of goods should be

chosen in a way that delivers an accurate approximation of the integral. Furthermore, a

way to judge if the number of goods selected delivers an appropriate approximation is to

increase the number of goods until the estimate of θ does not change too much.

Table 7 shows the results of this analysis. It shows how our estimate of θ varies as the

number of goods in the economy changes, using the EK data and 2005 ICP data. For the EK

data, notice that our estimates are relatively similar across all the different numbers of goods

employed, ranging from 4.14 to 3.93. Moreover, the estimates are effectively the same after

the number of goods is above 100,000, suggesting that this is a reasonable starting point.

Table 7: Results with Different # of Goods

Number of Goods 5,000 25,000 100,000 150,000∗

EK’s Data, Exactly Identified Case, θ̂ 4.14 3.99 3.93 3.93

Fraction of Wrong Zeros 0.10 0.03 0.005 0.003

Fraction of Correct Zeros — — — —

2004 ICP Data, Exactly Identified Case, θ̂ 5.54 4.67 4.22 4.12

Fraction of Wrong Zeros 0.46 0.31 0.21 0.18

Fraction of Correct Zeros 0.85 0.72 0.55 0.50

The results with the 2005 ICP data vary more depending upon the number of goods used.

While the change from 4.22 to 4.12 when going from 100,000 to 150,000 goods is numerically

large, computational costs force our hand to settle on 150,000 as the number of goods in the

economy.16

15An alternative estimation strategy would be to use different numerical methods to compute the integrals
(14) and then to adjust the EK estimator given this value.

16The reason is that 150,000 goods is near the maximum number of goods feasible while still being able to
execute the simulation routine in parallel on a multi-core machine, which allows a speed-up of just under a
factor of eight.
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Table 7 also reports a side effect of using a low number of goods—zero trade flows between

countries predicted by the model in places where we observe positive trade flows in the

data. Table 7 reports the fraction of zeros that the model produces in instances where there

are positive trade flows observed in the data. With only 5,000 goods, using the 2005 ICP

data set, in almost half of the instances where trade flows are observed in the data, the

model generates a zero. While not as severe, ten percent of positive trade flows are assigned

zeros with the EK data. Results of this nature suggest increasing the number of goods to

minimize the number of wrong zeros, as well.

8.2. Country-Specific Effects

The price data used in our estimation were collected at the retail level. As such, they nec-

essarily reflect local (distribution) costs, sales taxes and mark-ups. These market frictions

do not affect our estimates of the elasticity parameter, for as long as they are country- but

not good-specific. The basic way to see this is to note that any country-specific effects will

cancel out in the denominator of (13). This is another reason for using β as a moment in our

estimation routine rather than some other moment.

8.3. Measurement Error

Measurement error in price data is a general concern in empirical work. In our estimation,

error of this nature may artificially generate larger maximal price differences than implied by

the underlying model. This would result in estimates of θ that are biased downwards. An

advantage of our estimation approach is that one can potentially address this issue directly.

For example, one can take a stand on the form of measurement error, introduce the simu-

lated measurement error into the artificial data set, and potentially estimate it jointly with

the trade elasticity. While we feel a formal treatment of this issue is beyond the scope of this

paper, we did perform some Monte Carlo experiments with additive log-normal measure-

ment error. We found that the magnitude of measurement error needed to affect our results

was extreme.

8.4. Variable Mark-ups

The price data used in our estimation likely reflect retail mark-ups, which are not only

country-, but also retailer-specific. In order to check whether such variable mark-ups af-

fect our results, we make use of a richer price data set. In particular, we obtain price data

from the EIU Worldwide Cost of Living Survey, which spans 77 of the original 123 countries
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we consider. More importantly, the data are comprised of 111 tradable goods per country,

and the price of each product is recorded once in a supermarket and once in a mid-price

store. We repeat our exercise by first using the prices of items collected in mid-price stores,

which appear to be cheaper on average, and then the prices found in supermarkets or chain

stores. We postpone the results until section 8.5.1, since the level of detail in the EIU data

allows us to also address aggregation bias, described there.

8.5. Aggregation

8.5.1. Data Approach

The basic-heading price data employed in our analysis are disaggregated; but, they are not

at the individual-good level. For example, a price observation titled “rice” contains the

average price across different types of rice sampled, such as basmati rice, wild rice, whole-

grain rice, etc. Suppose that basmati rice is the binding good for a pair of countries. In

the ICP data, we compute the difference between the average price of rice between the two

countries, which is smaller than the price difference of basmati rice, if the remaining types

of rice are more equally priced across the two countries. In this case, trade barriers are

underestimated and, consequently, the elasticity of trade is biased upwards.17

In order to alleviate the aggregation problem, Table 8 presents estimates of the elasticity

parameter using EIU’s good-level price data set, which spans a subset of 77 countries from

our original data set, but provides prices for 111 individual tradable goods in two types of

retail stores.18

The results in Table 8 suggest that aggregation causes a downward bias on trade-barrier esti-

mates, resulting in trade-elasticity estimates that are biased upwards. Indeed, when we use

the highly disaggregate EIU dataset, the elasticity of trade falls to 2.47-2.60. However, retail

mark-ups do not seem to bias the estimates, since the elasticity of trade is not dramatically

different whether high- or low-end store prices are used.

8.5.2. Model Approach

A more structural way to address aggregation bias is to view price data through the lenses

of a monopolistic competition framework (ex. Melitz (2003) and Chaney (2008)). In these

17Our aggregation argument is different from the argument by Imbs and Mejean (2009), who demonstrate
that imposing equal elasticities across disaggregated sectors of the economy results in lower elasticity of sub-
stitution estimates than ones obtained by allowing for heterogeneity.

18The results from the Step 1 gravity regressions are presented in Table 11 and Table 12.
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Table 8: Estimation Results With EIU Data

Estimate of θ (S.E.) β1 β2

Cheap Stores

Data Moments — 4.17 5.11

Exactly Identified Case 2.47 (0.02) 4.17 —

Overidentified Case 2.48 (0.02) 4.19 5.09

Expensive Stores

Data Moments — 4.39 5.23

Exactly Identified Case 2.60 (0.02) 4.39 —

Overidentified Case 2.54 (0.02) 4.29 5.21

models, varieties produced by firms with identical productivity draws from different source

countries can be thought of as varieties of a good produced with a particular productivity

level. Then, a basic-heading price would represent the average price of all varieties pro-

duced by firms with a particular productivity draw originating from different source coun-

tries. Simonovska and Waugh (2011) explore the implications of the monopolistic competi-

tion micro-structure for estimates of the elasticity of trade.

9. Conclusion

In this paper, we estimate the elasticity of trade using a simulated method of moments esti-

mator that exploits micro-price data. Our estimates of the elasticity of trade for 123 countries

that comprise most of world output range from 2.47 to 4.42. These results imply a doubling

in the measured welfare gains from trade, relative to existing estimates obtained following

the approach of EK.

The analysis in our paper has broader implications than merely arriving at unbiased es-

timates of the elasticity of trade. Results from Arkolakis, Costinot, and Rodriguez-Clare

(2011) suggest that heterogeneous firm and production models provide no value added for

aggregate outcomes over models that abstract from heterogeneity. Our methodological ap-

proach suggests otherwise.

In this paper, we exploit the micro-level structure of EK’s model to provide an estimate of

the elasticity of trade, which is the key parameter to measuring the welfare gains from trade.
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The important insight is that our approach to estimating this key parameter would not have

been possible in models without heterogeneous outcomes. Thus, while the EK, Melitz (2003)

and Chaney (2008) models may provide no new additional gains from trade, their structure

allows us to provide a better estimate of the elasticity of trade than a simple Armington

model would have allowed. The ability to use both measurement and theory in ways that

alternative models would not allow is an important component of the value added that new

heterogeneous firm and production models of international trade provide.
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A. Data Appendix

A.1. Trade Shares

To construct trade shares, we used bilateral trade flows and production data as follows:

Xni

Xn

=
Importsni

Gross Mfg. Productionn − Exportsn + Importsn
,

Xnn

Xn
= 1−

N
∑

k 6=n

Xni

Xn
.

Putting the numerator and denominator together is simply computing an expenditure share

by dividing the value of goods country n imported from country i by the total value of goods

in country n. The home trade share Xnn

Xn
is simply constructed as the residual from one minus

the sum of all bilateral expenditure shares.

To construct Xni

Xn
, the numerator is the aggregate value of manufactured goods that country n

imports from country i. Bilateral trade-flow data are from UN Comtrade for the year 2004.19

We obtain all bilateral trade flows for our sample of 123 countries at the four-digit SITC

19We use data for the year 1990 in section 6.2, which estimates the elasticity of trade using EK’s price data.
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level. We then used concordance tables between four-digit SITC and three-digit ISIC codes

provided by the UN and further modified by Muendler (2009).20 We restrict our analysis to

manufacturing bilateral trade flows only—namely, those that correspond with manufactur-

ing as defined in ISIC Rev.#2.

The denominator is gross manufacturing production minus manufactured exports (for only

the sample) plus manufactured imports (for only the sample). Gross manufacturing pro-

duction data are the most serious data constraint we faced. We obtain manufacturing pro-

duction data for 2004 from UNIDO for a large sub-sample of countries. We then imputed

gross manufacturing production for countries for which data are unavailable as follows: We

first obtain 2004 data on manufacturing (MVA) and agriculture (AVA) value added, as well

as population size (L) and GDP for all countries in the sample. We then impute the gross

output (GO) to manufacturing value added ratio for the missing countries using coefficients

resulting from the following regression:

log

(

MVA

GO

)

= β0 + βGDPCGDP + βLCL + βMVACMVA + βAV ACAVA + ǫ,

where βx is a 1x3 vector of coefficients corresponding to Cx, an Nx3 matrix which contains

[log(x), (log(x))2, (log(x))3] for the sub-sample of N countries for which gross output data are

available.

A.2. Prices

The ICP price data we employ in our estimation procedure is reported at the basic-heading

level. A basic heading represents a narrowly-defined group of goods for which expenditure

data are available. For example, basic heading “1101111 Rice” is made up of prices of dif-

ferent types of rice, and the resulting value is an aggregate over these different types of rice.

This implies that a typical price observation of ”Rice” contains different types of rice, as well

as different packaging options that affect the unit price of rice within and across countries.

According to the ICP Handbook, the price of the basic heading ”Rice” is constructed using

a transitive Jevons index of prices of different varieties of rice. To illustrate this point, sup-

pose that the world economy consists of three countries, A,B,C and ten types of rice, 1-10.

Further suppose that consumers in country A have access to all 10 types of rice; those in

country B only have access to types 1-5 of rice; and those in country C have access to types

20The trade data often report bilateral trade flows from two sources. For example, the exports of country A
to country B can appear in the UN Comtrade data as exports reported by country A or as imports reported
by country B. In this case, we take the report of bilateral trade flows between countries A and B that yields a
higher total volume of trade across the sum of all SITC four-digit categories.
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4-6 of rice. Although all types of rice are not found in all three countries, it is sufficient that

each pair of countries shares at least one type of rice.

The ICP obtains unit prices for all available types of rice in all three countries and records

a price of 0 if the type of rice is not available in a particular country. The relative price of

rice between countries A and B, based on goods available in these two countries, pA,B
AB , is a

geometric average of the relative prices of rice of types 1-5

pA,B
AB =

[

5
∏

j=1

pA(j)

pB(j)

]
1

5

.

Similarly, one can compute the relative price of rice between countries A and C (B and C)

based on varieties available in both A and C (B and C). The price of the basic heading ”Rice”

reported by the ICP is:

pAB =

[

pA,B
AB pA,B

AB

pA,C
AC

pB,C
BC

]
1

3

,

which is a geometric average that features not only relative prices of rice between countries

A and B, but also cross-prices between A and B linked via country C. This procedure en-

sures that prices of basic headings are transitive across countries and minimizes the impact

of missing prices across countries.

Thus, a basic-heading price is a geometric average of prices of varieties that is directly com-

parable across countries.

B. Proofs

Below, we describe the steps to proving Lemmata 1 and 2. The key part in Lemma 1 is

deriving the distribution of the maximal log price difference. We then prove Propositions 1

and 2.

B.1. Proof of Lemma 1, Lemma 2, and Proposition 1

First, we derive the distribution of the maximal log price difference. The key insight is to

work with direct comparisons of goods’ prices (i.e., do not impose equilibrium and work

from the equilibrium price distribution) and to compute the distribution of log price differ-
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ences and then the distribution of the maximal log price difference.

Having obtained the distribution of the maximum log price difference, we show that the

expected value of the maximum log price difference is biased in a finite sample and the

estimator β̂ is biased.

B.1.1. Preliminaries

In deriving the distribution of maximum log price differences, we will work with a rela-

beling of the production functions and exponential distributions following an argument in

Alvarez and Lucas (2007). They relate the pdfs of the exponential and Frèchet distributions.

The claim is that if zi ∼ exp(Ti), then yi ≡ z
− 1

θ

i ∼ exp(−Tiy
−θ
i ). To see this, notice that since

yi = h(zi) is a decreasing function, it must be that f(zi)dzi = −g(yi)dyi, where f, g are the

pdf’s of zi, yi, respectively. The result will allow us to characterize moments of the log price

difference by invoking properties of the exponential distribution.

B.1.2. Proof of Lemma 1

The proof of Lemma 1 follows.

Let z
− 1

θ

k ∼ exp(−Tk(z
− 1

θ

k )−θ) be the productivity associated with good z, drawn from the

Frèchet pdf in country k. By the argument above, the underlying distribution of zk is

exponential. The price for good z produced in country k and supplied to country i is

pik ≡ wkτikz
1

θ

k . The relative price ratio of good z between countries n and i is:

vni(z) =
min

{

mink 6=i[wkτnkz
1

θ

k ], wiτniz
1

θ

i

}

min
{

mink 6=n[wkτikz
1

θ

k ], wnτinz
1

θ
n

} (b.1)

Take this object to the power of θ:

(vni(z))
θ =

min
{

mink 6=i[w
θ
kτ

θ
nkzk], w

θ
i τ

θ
nizi

}

min
{

mink 6=n[wθ
kτ

θ
ikzk], w

θ
nτ

θ
inzn

} (b.2)

We want to characterize the distribution of (b.2), so we will first derive the pdf’s of its com-

ponents. Define z̃ik = wθ
kτ

θ
ikzk. Since zk ∼ exp(Tk), it must be that z̃ik ∼ exp(Tkw

−θ
k τ−θ

ik ). Let

λ̃ik ≡ Tkw
−θ
k τ−θ

ik .

Next, we derive the distribution of z̃i ≡ mink 6=n[w
θ
kτ

θ
ikzk] = mink 6=n[z̃ik]. Since each z̃ik ∼

exp(λ̃ik) and independent across countries k, z̃i ∼ exp(
∑

k 6=n λ̃ik). Define λ̃i ≡
∑

k 6=n λ̃ik.
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Repeat the procedure for importer n in the numerator.

Given these definitions, (b.2) can be rewritten as:

(vni(z))
θ =

min
{

z̃n, w
θ
i τ

θ
nizi

}

min
{

z̃i, wθ
nτ

θ
inzn

} (b.3)

Define ǫni(z) = log(vni(z)). Taking logs of expression (b.3) gives:

θǫni(z) = min {log(z̃n), [θ log(wi) + θ log(τni) + log(zi)]} (b.4)

− min {log(z̃i), [θ log(wn) + θ log(τin) + log(zn)]}

Next, we argue that θǫni(z) ∈ [−θ log(τin), θ log(τni)]. For any good z, θǫni(z) can satisfy one

and only one of the following three cases:

1. Countries n and i buy good z from two different sources. Then,

θǫni(z) = log(z̃n)− log(z̃i) (b.5)

2. Country n buys good z from country i. Assuming that trade barriers don’t violate the

triangle inequality, it must be that i buys the good from itself. Then,

θǫni(z) = θ log(wi) + θ log(τni) + log(zi)− θ log(wi)− log(zi) = θ log(τni) (b.6)

3. Country i buys good z from n. Then it must be that n buys the good from itself, so:

θǫni(z) = θ log(wn) + log(zn)− θ log(wn)− θ log(τin)− log(zn) = −θ log(τin) (b.7)

We claim that the following ordering occurs: −θ log(τin) ≤ log(z̃n) − log(z̃i) ≤ θ log(τni). To

show this, we need to consider the following two scenarios:

1. Countries n and i buy good z from the same source k. Then,

log(z̃n)− log(z̃i) = log(wθ
kτ

θ
nkzk)− log(wθ

kτ
θ
ikzk)

= θ(log(τnk)− log(τik)) (b.8)

Clearly,

θ(log(τnk)− log(τik)) ≥ −θ log(τin) ⇐⇒ τinτnk ≥ τik,
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where the latter inequality is true under the triangle inequality assumption.

Similarly,

θ(log(τnk)− log(τik)) ≤ θ log(τni) ⇐⇒ τnk ≤ τniτik,

again true by triangle inequality.

2. Country n buys good z from source a and country i from source b, a 6= b. We want to

show that −θ log(τin) ≤ log(wθ
aτ

θ
naza)− log(wθ

bτ
θ
ibzb) ≤ θ log(τni).

Since n imported from a over b, it must be that:

wθ
aτ

θ
naza ≤ wθ

bτ
θ
nbzb (b.9)

Similarly, since i imported from b over a, it must be that:

wθ
bτ

θ
ibzb ≤ wθ

aτ
θ
iaza (b.10)

To find the upper bound, take logs of (b.9) and subtract log(wθ
bτ

θ
ibzb) from both sides:

log(wθ
aτ

θ
naza)− log(wθ

bτ
θ
ibzb) ≤ log(wθ

bτ
θ
nbzb)− log(wθ

bτ
θ
ibzb) (b.11)

It suffices to show that the right-hand side is itself below the upper bound since, by

transitivity, so is the left-hand side (which is the object of interest).

log(wθ
bτ

θ
nbzb)− log(wθ

bτ
θ
ibzb) ≤ θ log(τni)

⇐⇒ θ log(τnb)− θ log(τib) ≤ θ log(τni)

⇐⇒ τnb ≤ τniτib, (b.12)

which is true by triangle inequality.

The argument for the lower bound is similar. Take logs of (b.10), multiply by −1 (and

reverse inequality) and add log(wθ
aτ

θ
naza) to both sides:

log(wθ
aτ

θ
naza)− log(wθ

bτ
θ
ibzb) ≥ log(wθ

aτ
θ
naza)− log(wθ

aτ
θ
iaza) (b.13)

It suffices to show that the right-hand side is itself above the lower bound since, by
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transitivity, so is the left-hand side (which is the object of interest).

log(wθ
aτ

θ
naza)− log(wθ

aτ
θ
iaza) ≥ −θ log(τin)

⇐⇒ θ log(τna)− θ log(τia) ≥ −θ log(τin)

⇐⇒ τinτna ≥ τia, (b.14)

which is true by triangle inequality.

Hence, θǫni(z) ∈ [−θ log(τin), θ log(τni)].

Next, we proceed to derive the distribution of θǫni(z) = log(z̃n)− log(z̃i). First, we derive the

pdfs of its two components.

Let yi ≡ log(z̃i). Then z̃i = exp(yi). The pdf of yi must satisfy:

f(yi)dyi = g(z̃i)dz̃i ⇒ f(yi) = λ̃i exp(−λ̃iz̃i)
dz̃i
dyi

⇒ f(yi) = λ̃i exp(−λ̃i exp(yi)) exp(yi)

⇒ F (yi) = 1− exp(−λ̃i exp(yi)) (b.15)

The same holds for n.

Now that we have the pdf’s of the two components, we can define the pdf of ǫ ≡ θǫni(z) ∈

[−θ log(τin), θ log(τni)] as follows:

f(ǫ) ≡ fyn−yi(x) =

∫ ∞

−∞

fyn(y)fyi(y − x)dy, (b.16)

where we have used the fact that yn and yi are independently distributed hence, the pdf of

their difference is the convolution of the pdfs of the two random variables.

Substituting the pdfs of yn and yi into (b.16) yields:

f(ǫ) =

∫ ∞

−∞

λ̃n exp(−λ̃n exp(y)) exp(y)λ̃i exp(−λ̃i exp(y − ǫ)) exp(y − ǫ)dy

=
−λ̃nλ̃i

(λ̃n exp(ǫ) + λ̃i)2





λ̃n exp(y + ǫ) + λ̃i exp(y) + exp(ǫ)

exp
{

exp(y)(λ̃n + λ̃i exp(−ǫ))
}





y=+∞

y=−∞

(b.17)

Let v(y) be the expression in the bracket.

lim
y→−∞

v(y) =
0 + 0 + exp(ǫ)

exp {0}
= exp(ǫ) (b.18)
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For the upper bound, we use l’Hopital rule:

lim
y→∞

v(y) = lim
y→∞

λ̃n exp(y + ǫ) + λ̃i exp(y)

exp
{

exp(y)(λ̃n + λ̃i exp(−ǫ))
}

exp(y)(λ̃n + λ̃i exp(−ǫ))

= lim
y→∞

λ̃n exp(ǫ) + λ̃i

exp
{

exp(y)(λ̃n + λ̃i exp(−ǫ))
}

(λ̃n + λ̃i exp(−ǫ))

= 0 (b.19)

Thus, (b.17) becomes:

f(ǫ) =
λ̃nλ̃i exp(ǫ)

(λ̃n exp(ǫ) + λ̃i)2
(b.20)

The corresponding cdf is:

F (ǫ) =1−
λ̃i

λ̃n exp(ǫ) + λ̃i

(b.21)

Given that ǫ is bounded, we can compute the truncated pdf as:

fT (ǫ) =
f(ǫ)

F (θ log(τni))− F (−θ log(τin))

= γ−1 λ̃nλ̃i exp(ǫ)

(λ̃n exp(ǫ) + λ̃i)2
, (b.22)

where:

γ = −
λ̃i

λ̃n exp(θ log(τni)) + λ̃i

+
λ̃i

λ̃n exp(−θ log(τin)) + λ̃i

(b.23)

Similarly, the truncated cdf is:

FT (ǫ) = γ−1

∫ ǫ

−θ log(τin)

f(t)dt (b.24)

Now that we have these distributions, we compute order statistics from them, which allow

us to characterize the trade barriers estimated from price data. We use the following result:

Given L observations drawn from pdf h(x), the pdf of the r-th order statistic (where r = L

40



is the max and r = 1 is the min) is:

hr(x) =
L!

(r − 1)!(L− r)!
H(x)r−1(1−H(x))L−rh(x) (b.25)

The pdf of the max reduces to:

hmax(x, L) =LH(x)L−1h(x)

With this pdf defined, we can compute the expectation of the maximum statistic:

E[max
z∈L

(xz)] =

∫ ∞

−∞

xhmax(x, L)dx (b.26)

Recall that we are interested in computing the expectation of the maximum logged price

difference between countries n and i. But, so far, we have derived the truncated pdf and cdf

of ǫ = θ log(vni(z)). Our object of interest is actually log(vni(z)) =
1
θ
ǫ. The expectation of this

object, which represents the maximum log price difference, for L draws, is given by:

E[max
z∈L

(log(pn(z))− log(pi(z)))] =
1

θ

∫ θ log(τni)

−θ log(τin)

ǫfmax(ǫ, L)dǫ, (b.27)

where:

fmax(ǫ, L) =LFT (ǫ)
L−1fT (ǫ)

=L

[

γ−1

∫ ǫ

−θ log(τin)

f(t)dt

]L−1

γ−1 λ̃nλ̃i exp(ǫ)

(λ̃n exp(ǫ) + λ̃i)2
(b.28)

Hence, the expectation of the maximum of the log price difference is proportional to 1/θ,

where the proportionality object comes from gravity,

E[max
z∈L

(log(pn(z))− log(pi(z)))] = Ψni(L;S, τ̃i, τ̃n), (b.29)

where:

Ψni(L;S, τ̃i, τ̃n) ≡
1

θ

∫ θ log(τni)

−θ log(τin)

ǫfmax(ǫ, L)dǫ, (b.30)

and the values S and τ̃n correspond with the definitions outlined in Definition 1. It is worth

emphasizing the nature of this integral: Other than the scalar in the front, it depends com-

pletely on objects that can be recovered from the standard gravity equation in (22).
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Finally, one can rewrite equation (b.30) via integration by parts as:

E[max
z∈L

(log(pn(z))− log(pi(z)))] = log τni −
1

θ

∫ θ log(τni)

−θ log(τin)

Fmax(ǫ, L)dǫ (b.31)

log τni = E[max
z∈L

(log(pn(z))− log(pi(z)))] +
1

θ

∫ θ log(τni)

−θ log(τin)

Fmax(ǫ, L)dǫ, (b.32)

which implies the following strict inequality:

log τni > E[max
z∈L

(log(pn(z))− log(pi(z)))] = Ψni(L;S, τ̃i, τ̃n), (b.33)

where the strict inequality simply follows from the inspection of the CDF Fmax(ǫ, L) which

has positive mass below the point θ log(τni). This then proves claim 1. in Lemma 1.

To prove claim 2. in Lemma 1, we compute the difference in the expected values of log

prices between two countries. We show that they are equal to the (scaled) difference in the

price parameters Φ.

Rather than working with the distribution described above, it is more convenient to directly

compute the expectation of log prices using the equilibrium price distribution. Note that

EK show that the cdf and pdf of prices in country i are G(p) = 1 − exp(−Φip
θ) and g(p) =

pθ−1θΦi exp(−Φip
θ), respectively.

For any country i, define the expectation of logged prices as

E[log(pi(z))] =

∫ ∞

0

log(p)g(p)dp (b.34)

Substituting the pdf of prices and then utilizing some algebra to find an appropriate change

in variables, expression (b.34) yields

E[log(pi(z))] =

∫ ∞

0

log(p)pθ−1θΦi exp(−Φip
θ)dp

=

∫ ∞

0

log(p)θΦi exp(θ log(p)) exp(−Φi exp(θ log(p)))
dp

p

Our change of variables will set x = log(p), which yields dx/dp = 1/p. Then, integration by
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change of variables allows us to rewrite the above as

E[log(pi(z))] =

∫ ∞

0

log(p)θΦi exp(θ log(p)) exp(−Φi exp(θ log(p)))
dp

p

=

∫ ∞

0

xθΦi exp(θx) exp(−Φi exp(θx))
θ

θ
dx

Let y = θx, so that dy/dx = θ; then, another change of variables gives

E[log(pi(z))] =
1

θ

∫ ∞

0

yΦi exp(y) exp(−Φi exp(y))dy

Let t = Φi exp(y), so that dt/dy = Φi exp(y) and y = log(t/Φi). Then,

E[log(pi(z))] =
1

θ

∫ ∞

0

log

(

t

Φi

)

exp(−t)dt

=
1

θ

{
∫ ∞

0

log (t) exp(−t)dt−

∫ ∞

0

log (Φi) exp(−t)dt

}

=−
1

θ
{γ + log(Φi)} , (b.35)

where γ is the Euler-Mascheroni constant. Finally, using (b.35) and taking the expected dif-

ference in log prices between country n and country i, the scaled Euler-Mascheroni constant

cancels between the two countries and leaves the following expression

E[log(pn(z))]− E[log(pi(z))] = −
1

θ
{log (Φn)− log (Φi)} (b.36)

≡ Ωni(S, τ̃n, τ̃i),

which then proves claim 2. in Lemma 1.

B.1.3. Proof of Lemma 2 and Proposition 1

To prove Lemma 2 and Proposition 1, we invert EK’s estimator for the elasticity of trade:

1

β̂
= −

∑

n

∑

i

(

log τ̂ni + log P̂i − log P̂n

)

∑

n

∑

i log
(

Xni/Xn

Xii/Xi

) (b.37)

Given the assumption that the trade data are fixed, equation (b.37) is linear in the random

variables log τ̂ni and (log P̂n − log P̂i). With this observation, taking expectations of these
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random variables yields

E

(

1

β̂

)

=
1

θ







−

∑

n

∑

i(θΨni(L)− (log Φi − log Φn))
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)







<
1

θ
, (b.38)

by substituting in for the expectation of the maximum log price difference using (b.30), and

the difference in expectations of log prices using (b.36). Inspection of the bracketed term

above implies that the following strict inequality must hold,

1 >







−

∑

n

∑

i(θΨni(L)− (log Φi − log Φn))
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)







> 0, (b.39)

with the reason being that Ψni(L) < log τni from Lemma 1; otherwise, the bracketed term

would correspond exactly with equation (5) in logs and, thus, equal one. Now, inverting the

expression above and applying Jensen’s inequality results in the following:

E(β̂) ≥

[

E

(

1

β̂

)]−1

= θ







−

∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)

∑

n

∑

i(θΨni(L)− (log Φi − log Φn))







> θ, (b.40)

with the strict inequality following from (b.38) and (b.39). This proves Proposition 1.

B.2. Proof of Proposition 2

In this subsection, we prove Proposition 2. To prove the claims in Proposition 2, we start

with claim 1.

To prove claim 1., we argue that the sample maximum of scaled log price differences is a

consistent estimator of the scaled trade cost. In particular, we argue that as the sample size

becomes infinite, the probability that the sample scaled trade cost is arbitrarily close to the

true scaled trade cost is one.

To see this, consider an estimate of the scaled trade barrier, given a sample of L goods’

prices,

θ log τ̂Lni = θ

{

max
ℓ=1,...,L

(log pn(ℓ)− log pi(ℓ))

}

. (b.41)

The cdf of this random variable is the integral of its pdf, which is given in expression (b.28),

over the compact interval in which the scaled logged price difference lies, [−θ log τin, θ log τni].
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Denote this cdf by FL
max. From (b.28), FL

max ≡ (FT )
L, where FT is the truncated distribution

of the scaled log price difference over the domain [−θ log τin, θ log τni]. By definition, FT and

FL
max take on values between zero and one, as they are cdfs. In particular, for any realization

x < θ log τni, FT (x) < 1. For any L > 1, FL
max(x) = (FT (x))

L ≤ FT (x) < 1.

Take L → ∞. Then, for any x ∈ [−θ log τin, θ log τni), F
L
max = (FT )

L becomes arbitrarily close

to zero since FT < 1. Hence, all the mass of the cdf FL
max becomes concentrated at θ log τni.

Thus, as the sample size becomes infinite, the estimated scaled trade barrier converges to

the true scaled trade barrier, in probability. Rescaling everything by 1
θ

then implies

plim
L→∞

log τ̂Lni = plim
L→∞

max
ℓ=1,...,L

(log pn(ℓ)− log pi(ℓ)) = log τni. (b.42)

This proves claim 1. of Proposition 2.

To show consistency of the estimator β̂, we argue that

plim
L→∞

β̂ (L;S, τ̃ ,X) = θ, (b.43)

or, equivalently, that ∀δ > 0,

lim
L→∞

Pr
[

‖ β̂ (L;S, τ̃ ,X)− θ ‖< δ
]

= 1. (b.44)

Basically, we will argue that, by sampling the prices of an ever-increasing set of goods and

applying the estimator β over these prices, with probability one, we will obtain estimates

that are arbitrarily close to θ.

Inverting the expression for the estimator β̂ in expression (13), rearranging, and multiplying

and dividing by the scalar θ yields

1

β̂
=

1

θ

∑

n

∑

i

(

θ log τ̂Lni − θ[log P̂n − log P̂i]
)

−
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

) . (b.45)

By assumption, the denominator is trade data and is not a random variable.

In the numerator, log P̂n− log P̂i is the difference in the average of logged prices for countries

n and i, given a sample of L goods. In particular,

log P̂n − log P̂i ≡
1

L

L
∑

ℓ=1

log pn(ℓ)−
1

L

L
∑

ℓ=1

log pi(ℓ) (b.46)
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We refer the reader to Davidson and MacKinnon (2004) for a proof of the well known result

that the sample average is both an unbiased and consistent estimator of the mean. Since the

difference operator is continuous, the difference in the sample average of logged price is an

unbiased and consistent estimator of the difference in mean logged prices. Finally, multi-

plying these sample averages by a scalar θ, a continuous operation, ensures convergence to

true difference in the price terms Φ.

We have argued that the two components in the numerator converge in probability to their

true parameter counterparts, as the sample size becomes infinite. Taking the difference of

these two components, summing over all country pairs (n, i), and dividing by the scalar
[

−
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)]

, all of which are continuous operations, allows us to conclude that

plim
L→∞

∑

n

∑

i

(

θ log τ̂Lni − θ[log P̂n − log P̂i]
)

−
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)

=plim
L→∞

∑

n

∑

i

(

θmaxℓ=1,...,L(log pn(ℓ)− log pi(ℓ))− θ
[

1
L

∑L
ℓ=1 log pn(ℓ)−

1
L

∑L
ℓ=1 log pi(ℓ)

])

−
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

)

=
−
∑

n

∑

i (θ log τni − [log Φi − log Φn])
∑

n

∑

i log
(

Xni/Xn

Xii/Xi

) . (b.47)

To complete the argument, consider the log of expression (5), which involves Φ. Summing

this expression over all (n, i) country pairs gives:

∑

n

∑

i

log

(

Xni/Xn

Xii/Xi

)

= −
∑

n

∑

i

(θ log τni − [log Φi − log Φn]). (b.48)

Substituting expression (b.48) in the denominator of (b.47) above makes the fraction in that

expression equal to unity. Hence, 1/β̂ converges to 1/θ in probability. Since, for β ∈ (0,∞),

1/β̂ is a continuous function of β̂, β̂ converges to θ in probability. This proves claim 2. of

Proposition 2.

Claim 3. of Proposition 2 follows from the fact that β̂ is a consistent estimator of θ (see

Hayashi (2000) for a discussion).
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B.3. Deriving the Inverse Marginal Cost Distribution

To simulate the model, we argue that by using the coefficients S estimated from the gravity

regression (22), we have enough information to simulate prices and trade flows. The key

insight is that the S’s are sufficient to characterize the inverse marginal cost distribution.

Thus, we can sample from this distribution and then compute equilibrium prices and trade

flows.

To see this argument, let zi ∼ Fi(zi) = exp(−Tiz
−θ
i ) and define ui ≡ zi/wi. The pdf of zi is

fi(zi) = exp(−Tiz
−θ
i )θTiz

−θ−1
i . To find the pdf of the transformation ui, mi(ui), use the fact

that fi(zi)dzi = mi(ui)dui, or mi(ui) = fi(zi)(dui/dzi)
−1. Let S̃i = Tiw

−θ
i . Using fi(zi), S̃i, and

the fact that dui/dzi = 1/wi, we obtain:

mi(ui) = fi(zi)

(

dui

dzi

)−1

= exp(−Tiz
−θ
i )θTiz

−θ−1
i

(

1

wi

)−1

= exp

(

−Tiz
−θ
i

w−θ
i

w−θ
i

)

θTiz
−θ−1
i

(

1

wi

)−1
w−θ

i

w−θ
i

= exp

(

−S̃i
z−θ
i

w−θ
i

)

θS̃i
z−θ−1
i

w−θ−1
i

= exp
(

−S̃iu
−θ
i

)

θS̃iu
−θ−1
i

Clearly mi(ui) is the pdf that corresponds to the cdf Mi(ui) = exp(−S̃iu
−θ
i ), which concludes

the argument.
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Table 9: 2005 ICP Data, Step 1 Country-Specific Estimates

Country Ŝi S.E. exi S.E. Country Ŝi S.E. exi S.E. Country Ŝi S.E. exi S.E.
Angola −1.04 0.21 −2.67 0.35 Fiji −0.58 0.20 −2.06 0.31 Nepal 0.48 0.24 −3.00 0.32
Argentina 1.13 0.18 2.34 0.25 Finland 1.09 0.17 2.15 0.23 New Zealand −0.25 0.30 3.17 0.24
Armenia 0.83 0.20 −3.91 0.29 France 0.39 0.16 5.09 0.22 Nigeria −0.85 0.25 −1.00 0.29
Australia 0.24 0.16 3.59 0.23 Gabon −1.07 0.18 −1.52 0.27 Norway 0.33 0.37 1.88 0.23
Austria 0.39 0.16 2.71 0.22 Gambia, The −2.40 0.22 −2.32 0.34 Oman −0.19 0.36 −0.74 0.26
Azerbaijan −0.03 0.20 −2.76 0.28 Georgia −2.78 0.19 0.70 0.27 Pakistan 0.55 0.29 2.03 0.23
Bangladesh 0.76 0.18 0.46 0.24 Germany 0.40 0.16 5.57 0.22 Paraguay 0.04 0.36 −0.74 0.28
Belarus 1.27 0.18 −0.98 0.25 Ghana −1.32 0.21 0.44 0.29 Peru 0.47 0.24 1.10 0.25
Belgium −2.75 0.16 8.26 0.22 Greece 0.78 0.16 0.58 0.23 Philippines −0.34 0.39 2.64 0.24
Benin −0.62 0.22 −3.66 0.36 Guinea −1.76 0.22 −2.16 0.33 Poland 0.84 0.34 1.76 0.23
Bhutan 0.37 0.30 −5.45 0.43 Guinea-Bissau −0.40 0.28 −5.77 0.48 Portugal −0.20 0.24 2.71 0.23
Bolivia 0.28 0.19 −1.65 0.29 Hungary 0.86 0.17 0.98 0.23 Romania 0.60 0.25 0.75 0.23
Bosnia and Herzegovina 1.14 0.23 −3.68 0.32 Iceland −0.26 0.18 −0.55 0.26 Russian Federation 1.32 0.34 2.12 0.23
Botswana 0.97 0.25 −3.73 0.37 India 0.94 0.16 3.53 0.25 Rwanda 0.09 0.27 −5.05 0.36
Brazil 1.30 0.16 3.67 0.23 Indonesia 1.34 0.16 3.07 0.23 Sierra Leone −0.97 0.25 −3.61 0.41
Brunei Darussalam 1.68 0.25 −5.15 0.37 Iran, Islamic Rep. 1.02 0.21 −0.85 0.28 Saudi Arabia 0.70 0.30 0.70 0.28
Bulgaria 0.30 0.17 0.39 0.24 Ireland −3.21 0.16 6.39 0.22 Senegal −0.86 0.27 −0.63 0.25
Burkina Faso 0.32 0.20 −4.07 0.31 Israel 0.59 0.17 1.70 0.24 Slovak Republic −0.31 0.26 1.34 0.23
Burundi −1.52 0.20 −3.12 0.34 Italy 0.58 0.16 4.56 0.22 Slovenia 1.02 0.38 −0.20 0.24
Cameroon 1.54 0.21 −3.34 0.30 Japan 1.51 0.16 4.89 0.23 South Africa 0.41 0.25 3.61 0.23
Canada −0.27 0.16 4.59 0.22 Jordan −0.25 0.18 −0.65 0.25 Spain 0.29 0.31 4.09 0.22
Cape Verde −0.37 0.21 −4.86 0.38 Kazakhstan 0.28 0.18 −0.03 0.26 Sri Lanka −0.14 0.42 0.65 0.25
Central African Republic 0.55 0.25 −4.67 0.36 Kenya −0.53 0.16 −0.07 0.23 Sudan −0.12 0.33 −3.47 0.32
Chad 0.54 0.24 −6.49 0.40 Korea, Rep. 1.04 0.16 4.38 0.22 Swaziland 2.10 0.38 −3.30 0.33
Chile 0.27 0.18 1.96 0.25 Kyrgyz Republic 0.03 0.20 −2.86 0.30 Sweden 0.75 0.31 3.34 0.22
China 1.13 0.16 5.74 0.23 Lao PDR 1.43 0.27 −3.92 0.35 Switzerland 0.10 0.25 3.69 0.27
Colombia 0.38 0.17 0.50 0.24 Latvia −0.46 0.19 −0.10 0.26 Syrian Arab Republic −0.34 0.31 −0.86 0.26
Comoros −0.84 0.27 −4.54 0.42 Lebanon 0.60 0.20 −2.29 0.28 Tajikistan 1.10 0.37 −3.19 0.34
Congo, Dem. Rep. −0.65 0.24 −2.31 0.34 Lesotho 1.09 0.30 −5.44 0.44 Tanzania −1.01 0.26 −1.41 0.31
Congo, Rep. −0.95 0.21 −1.08 0.30 Lithuania 0.67 0.21 −0.88 0.29 Thailand 0.86 0.29 3.57 0.28
Cte d’Ivoire 0.78 0.21 −1.22 0.30 Macedonia, FYR 0.41 0.18 −2.71 0.27 Togo −1.40 0.25 −1.34 0.27
Croatia 1.08 0.16 −1.29 0.24 Malawi −0.63 0.19 −2.59 0.28 Tunisia 0.34 0.36 −0.30 0.24
Cyprus −0.86 0.17 0.45 0.24 Malaysia −1.43 0.16 6.58 0.22 Turkey 0.93 0.28 2.38 0.23
Czech Republic 0.43 0.16 2.02 0.23 Mali −1.03 0.23 −2.66 0.32 Uganda −0.71 0.29 −2.30 0.26
Denmark −0.24 0.16 3.63 0.23 Mauritania −1.97 0.23 −1.79 0.33 Ukraine 1.41 0.24 0.88 0.28
Djibouti −2.04 0.24 −2.37 0.38 Mauritius −1.63 0.17 1.44 0.24 United Kingdom −0.29 0.32 5.59 0.22
Ecuador −0.24 0.18 0.12 0.26 Mexico 0.21 0.16 2.61 0.24 United States 0.06 0.34 6.87 0.22
Egypt, Arab Rep. 0.44 0.17 0.62 0.23 Moldova −0.47 0.19 −2.12 0.29 Uruguay −0.51 0.29 1.40 0.27
Equatorial Guinea 0.47 0.24 −4.24 0.39 Morocco −0.39 0.17 1.32 0.23 Venezuela, RB 0.72 0.29 −0.60 0.26
Estonia −1.74 0.17 1.61 0.24 Mozambique −0.16 0.22 −2.06 0.33 Vietnam −0.44 0.24 2.69 0.28
Ethiopia −0.66 0.21 −2.15 0.31 Namibia 1.09 0.23 −3.64 0.33 Zambia −3.99 0.30 2.59 0.27
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Table 10: EK Data, Step 1 Country-Specific Estimates

Country Ŝi S.E. exi S.E. Country Ŝi S.E. exi S.E.
Australia −0.20 0.15 0.54 0.24 Japan 2.54 0.13 1.74 0.21
Austria 0.50 0.12 −1.65 0.18 Netherlands −3.09 0.12 0.80 0.18
Belgium −4.38 0.12 0.98 0.18 New Zealand −1.42 0.15 0.37 0.24
Canada −0.46 0.13 1.06 0.22 Norway −0.34 0.12 −1.01 0.18
Denmark −1.16 0.12 −0.67 0.18 Portugal −0.28 0.12 −1.38 0.19
Finland 0.82 0.12 −1.33 0.18 Spain 1.56 0.12 −1.35 0.18
France 1.15 0.12 0.05 0.18 Sweden 0.05 0.12 −0.06 0.18
Germany 1.44 0.12 0.82 0.18 United Kingdom 0.52 0.12 0.89 0.18
Greece −0.38 0.12 −2.51 0.18 United States 1.34 0.13 2.83 0.22
Italy 1.81 0.12 −0.12 0.18

Table 10: EIU Data, Step 1 Country-Specific Estimates

Country Ŝi S.E. exi S.E. Country Ŝi S.E. exi S.E. Country Ŝi S.E. exi S.E.
Argentina 0.71 0.17 0.74 0.24 Iceland −0.06 0.17 −3.09 0.24 Poland 0.56 0.16 0.26 0.23
Australia −0.23 0.16 2.19 0.24 India 0.54 0.16 1.76 0.24 Portugal −0.03 0.16 0.31 0.23
Austria 0.11 0.16 1.31 0.23 Indonesia 1.01 0.16 1.39 0.23 Romania 0.13 0.16 −0.42 0.23
Azerbaijan 0.06 0.17 −5.28 0.25 Iran, Islamic Rep. 0.75 0.18 −2.71 0.26 Russian Federation 1.17 0.16 0.55 0.24
Belgium −2.79 0.16 6.16 0.23 Ireland −3.13 0.16 4.65 0.23 Saudi Arabia 0.22 0.18 −0.59 0.26
Brazil 0.59 0.16 2.33 0.23 Israel 0.08 0.17 0.37 0.24 Senegal −0.70 0.17 −3.76 0.25
Brunei Darussalam 1.59 0.21 −7.49 0.32 Italy 0.35 0.16 2.93 0.23 Slovak Republic −0.45 0.16 −0.21 0.23
Bulgaria 0.03 0.17 −1.23 0.24 Japan 1.09 0.16 3.49 0.23 South Africa 0.00 0.16 1.76 0.23
Canada −0.44 0.16 2.89 0.23 Jordan −0.81 0.17 −1.88 0.24 Spain 0.03 0.16 2.48 0.23
Central African Republic 0.69 0.21 −7.07 0.31 Kazakhstan 0.55 0.17 −2.45 0.24 Sri Lanka −0.25 0.17 −1.06 0.24
Chile −0.04 0.17 0.56 0.24 Kenya −0.65 0.16 −2.69 0.24 Sweden 0.42 0.16 1.86 0.23
China 0.71 0.16 4.04 0.23 Korea, Rep. 0.58 0.16 3.06 0.23 Switzerland −0.04 0.18 2.05 0.25
Colombia 0.11 0.16 −1.18 0.24 Malaysia −1.93 0.16 5.33 0.23 Syrian Arab Republic −0.41 0.17 −3.04 0.24
Cote d’Ivoire 0.80 0.18 −3.42 0.27 Mexico −0.23 0.16 1.43 0.24 Thailand 0.51 0.18 1.87 0.25
Czech Republic 0.05 0.16 0.68 0.23 Morocco −0.47 0.16 −0.65 0.23 Tunisia 0.10 0.16 −2.02 0.24
Denmark −0.37 0.16 1.74 0.23 Nepal 0.43 0.21 −5.07 0.28 Turkey 0.71 0.16 0.51 0.23
Ecuador −0.32 0.17 −1.84 0.24 New Zealand −0.62 0.17 1.75 0.24 Ukraine 1.52 0.18 −1.21 0.26
Egypt, Arab Rep. 0.29 0.16 −1.30 0.23 Nigeria −1.02 0.18 −2.98 0.26 United Kingdom −0.38 0.16 3.71 0.23
Ethiopia −0.68 0.18 −4.15 0.27 Norway 0.35 0.16 0.00 0.23 United States −0.25 0.16 5.19 0.23
Finland 0.60 0.16 0.93 0.23 Oman −0.36 0.17 −2.94 0.25 Uruguay −0.53 0.18 −0.59 0.25
France 0.38 0.16 3.04 0.23 Pakistan 0.30 0.16 0.09 0.23 Venezuela, RB 0.85 0.17 −2.51 0.24
Germany 0.11 0.16 3.95 0.23 Paraguay −0.03 0.18 −3.03 0.26 Vietnam −0.37 0.18 0.63 0.26
Greece 0.33 0.16 −0.92 0.23 Peru 0.22 0.17 −0.73 0.24 Zambia −1.91 0.17 −1.84 0.26
Hungary 0.59 0.16 −0.17 0.23 Philippines −0.72 0.16 1.50 0.23
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Table 12: Step 1 Trade Cost Estimates and Summary Statistics

Geographic Barriers ICP 2005 Data EK Data EIU Data

Barrier Parameter Estimate S.E. Parameter Estimate S.E. Parameter Estimate S.E.

[0, 375) − 5.30 0.21 −2.89 0.14 −5.02 0.19

[375, 750) − 6.29 0.14 −3.56 0.10 −5.28 0.11

[750, 1500) − 7.27 0.09 −3.87 0.07 −5.71 0.07

[1500, 3000) − 8.50 0.06 −4.10 0.15 −6.63 0.05

[3000, 6000) − 9.65 0.04 −6.15 0.09 −7.70 0.04

[6000,maximum] −10.35 0.05 −6.60 0.10 −8.41 0.04

Shared border 1.25 0.12 0.44 0.14 1.04 0.16

Summary Statistics

ICP 2005 Data EK Data EIU Data

No. Obs 10, 513 342 4, 607

TSS 152, 660 2, 936 47, 110

SSR 30, 054 76.56 8, 208

σ2

ν
2.93 0.25 1.84
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