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Abstract

Adaptive Metropolis-Hastings samplers use information obtained from previous draws
to tune the proposal distribution automatically and repeatedly. Adaptation needs to
be done carefully to ensure convergence to the correct target distribution because the
resulting chain is not Markovian. We construct an adaptive independent Metropolis-
Hastings sampler that uses a mixture of normals as a proposal distribution. To take
full advantage of the potential of adaptive sampling our algorithm updates the mixture
of normals frequently, starting early in the chain. The algorithm is built for speed and
reliability and its sampling performance is evaluated with real and simulated examples.
Our article outlines conditions for adaptive sampling to hold and gives a readily ac-
cessible proof that under these conditions the sampling scheme generates iterates that
converge to the target distribution.

Keywords: Clustering; Gibbs sampling; Markov chain Monte Carlo; Semiparamet-
ric regression models; State space models.

1 Introduction

Bayesian methods using Markov chain Monte Carlo (MCMC) simulation have greatly in-

fluenced statistical practice over the past twenty years because of their ability to estimate

complex models and produce finite sample inference. A key component in implementing

MCMC simulation is the Metropolis-Hastings (MH) method (Metropolis et al. 1953; Hast-

ings 1970), which requires the specification of one or more proposal distributions. The

speed at which the chain converges to the posterior distribution and its ability to move

efficiently across the state space depend crucially on whether the proposal distribution(s)

provide good approximations to the target distributions, either locally or globally. Given

the key role played by proposal distributions, it is natural to use experience from previous
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draws to adapt the proposal to the target. Our article considers adaptive sampling that is

subject to theoretical rules which ensure that the iterates converge to realizations from the

correct target (posterior) distribution.

The literature on adaptive MCMC methods follows three main strands. Adaptation by

regeneration stems from the work of Gilks et al. (1998). Adapting on the target distribution

is proposed by Wang and Landau (2001) and generalized by Liang et al. (2007) and Atchade

and Liu (2007). Our article focuses exclusively on diminishing adaptation schemes. Impor-

tant theoretical advances in diminishing adaptation were made by Holden (1998), Haario

et al. (2001), Andrieu and Robert (2001), Andrieu and Moulines (2006), Andrieu et al.

(2005), Atchadé and Rosenthal (2005), Nott and Kohn (2005) and Roberts and Rosenthal

(2007). The proofs of convergence for strict adaptive sampling are more complex than for

the non adaptive case as the iterates are not Markovian because the MH kernel can depend

on the entire history of the draws. Although more theoretical work on adaptive sampling

can be expected, the existing body of results provides sufficient justification and guidelines

to build adaptive MH samplers for challenging problems.

Research is now needed on how to design efficient and reliable adaptive samplers for

broad classes of problems. This more applied literature mostly focuses on random walk

Metropolis, see for example Roberts and Rosenthal (2006). Partial exceptions are G̊asemyr

(2003) who uses normal proposals for an independent Metropolis-Hastings, but limits the

tuning of the parameters to the burn-in period and Hastie (2005) who uses two step adap-

tation in a reversible jump context. By two step adaptation we loosely mean a sampling

scheme in which a rather thorough exploration of the target density is carried out in the

first part of the chain by a sampler other than independent MH (such as random walk

Metropolis) before switching to a more efficient independent MH sampler with proposal

density tuned on the first-stage draws. Independent MH schemes are implemented by Nott

and Kohn (2005) to sample discrete state spaces in variable selection problems (e.g. to learn

if a variable is in or out), and by Giordani and Kohn (2008) to learn about interventions,

such as breaks or outliers, in dynamic mixture models.
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Our paper contributes to the development of algorithms for adaptive independent MH

sampling in continuous state spaces. Increased sampling efficiency is one important goal,

particularly in cases where current best practice (typically some version of random walk

Metropolis or Gibbs sampling) is less than satisfactory. But equally important achievements

of adaptive schemes may be to expand the set of problems that can be handled efficiently by

general purpose samplers and to reduce coding effort. In particular, adaptive schemes can

reduce dependence on the use of conjugate priors. Such priors make it easier to implement

MCMC schemes, but are less necessary when using adaptive sampling.

Our adaptive sampling approach is built on four main ideas. The first is to combine

preliminary exploration of the target distribution and adaptive sampling into one estimation

procedure. The second is to estimate mixtures of Gaussians from the history of the draws

and use them as proposal distributions for independent MH in all parts of the estimation.

The third is to perform this estimation frequently, particularly during the early part of the

estimation, a strategy that we call intensive adaptation. The fourth is to ensure that the

theoretical conditions for the correct ergodic behavior of the sampler are respected during

adaptation. To apply these ideas successfully, estimation of the mixture parameters needs

to be fast, reliable, and robust. We achieve a good balance of these goals by carefully

selecting and tailoring to our needs algorithms developed in the clustering literature.

We study the performance of our adaptive sampler in two examples in which commonly

used Gibbs schemes can be very inefficient and compare it with an adaptive random walk

Metropolis sampler proposed by Roberts and Rosenthal (2006) that builds on the work of

Haario et al. (2001).

Our paper also provides conditions and outlines a proof that our adaptive sampling

scheme converges to the correct target distribution and gives convergence rates.

Our working paper available at http://arxiv.org/PS cache/arxiv/pdf/0801/0801.1864v1.pdf

contains several other applications and a more extensive discussion.
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2 Some theory for adaptive sampling

A diminishing adaptation MH sampler performs the accept/reject step like a standard MH,

but updates the proposal distribution using the history of the draws. This updating is ‘di-

minishing’ in the sense that changes in the proposal distribution tend to zero asymptotically

in the number of iterations. In practice, this usually means that the proposal distribution

itself settles down asymptotically.

This section outlines the theoretical framework for adaptive independent Metropolis-

Hastings sampling as used in our article that gives some support for our practice. The

appendix outlines proofs of the theoretical results, which extend similar results in Nott and

Kohn (2005) for the case of a finite state space. Our aim is to provide simple accessible

proofs that will help to popularize the adaptive methodology. All densities in this section

are with respect to Lebesgue measure or counting measure, which we denote as µ{·}.
Let Z be a sample space and π(z) a target density on Z. We use the following adaptive

MH scheme to construct a sequence of random variables {Zn, n ≥ 2} whose distribution

converges to π(z). Z0 and Z1 are generated from g0(z) which is defined below. For n ≥ 1,

let qn(z; λn) be a proposal density for generating Zn+1, where λn is a parameter vector that

is based on Z0 = z0, . . . , Zn−1 = zn−1. Thus, given Zn = z, we generate Zn+1 = z′ from qn,

and then with probability

αn(z, z′) = min
(

1,
π(z′)
π(z)

qn(z; λn)
qn(z′; λn)

)
(1)

we take Zn+1 = z′; otherwise we take Zn+1 = z. Our choice of qn(z;λn) is of the form

qn(z; λn) = ω1g0(z) + (1− ω1)gn(z; λn) (2)

where 0 < ω1 < 1. The density g0(z) is constant and the density gn(z;λn) has parameter

vector λn that evolves with the iterates. The form of both densities as used in our article

is described more fully below.
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We assume that there exists a constant K > 0 such that for all z ∈ Z

π(z)
g0(z)

≤ K and
gn(z; λn)

g0(z)
≤ K , (3)

and

sup
z∈Z

∣∣∣∣
(

gn(z; λn)− gn+1(z; λn+1)
)

/g0(z)
∣∣∣∣ = an (4)

where an = O(n−r) for some r > 0 almost surely. In relation to the dominance condition

(3), we note that in the non-adaptive case, that is qn(z; λn) = q(z) for all n, Mengersen and

Tweedie (1996) show that π(z)/q(z) ≤ K for all z is a necessary and sufficient condition

for geometric ergodicity.

Under conditions (3) and (4), the following results are proved in Appendix 2.

Theorem 1 For all measurable subsets A

sup
A⊂Z

| Pr(Zn ∈ A)− π(A) | → 0 as n →∞. (5)

Theorem 2 Suppose that h(z) is a measurable function that is square integrable with respect

to the density g0. Then, almost surely,

1
n

n∑

j=1

h(Zj) → Eπ(h(Z)) as n →∞. (6)

We now describe the construction of gn(z; λn) in the article. Let g?
n(z; λ?

n) be a mixture

of normals with parameters λ?
n which is obtained using k-harmonic means clustering as

described in section 4 and appendix 1. Let g̃?
n(z; λ̃?

n) be a second mixture of normals having

the same component weights and means as g?
n(z; λ?

n), but with its component variances

inflated by a factor k > 1. We set

gn(z; λn) = ω′2g̃
?
n(z; λ̃?

n) + (1− ω′2)g
?
n(z;λ?

n) , (7)
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where ω′2 = ω2/(1− ω1) with ω1 defined in (2), ω1 > 0, ω2 > 0, and ω1 + ω2 < 1. Thus,

qn(z; λn) = ω1g0(z) + ω2g̃
?
n(z; λ̃?

n) + (1− ω1 − ω2)g?
n(z; λ?

n) .

We note that gn(z; λn) is also a mixture of normals with parameters λn, and we say that it

is obtained by ‘stretching and fattening’ the tails of g?
n(z;λ?

n). This strategy for obtaining

heavier tailed mixtures is used extensively in our paper.

Conditions (3) and (4) provide guidance for our algorithms and are checked informally in

our work. The target π(z) in our applications is the posterior density of the parameters and

so is proportional to π0(z)π1(z), where π0(z) is the prior and π1(z) is the likelihood. Thus,

if π0(z)/g0(z) is bounded for all n and all z ∈ Z and if the maximum likelihood estimator

exists then π(z)/g0(z) is also bounded. If we choose g0(z) such that g̃?
n(z; λ̃?

n)/g0(z) ≤ K

for all n and z ∈ Z then gn(z; λn) will also be bounded. Finally, we check informally

that (4) holds by checking that the iterates g?
n(z; λ?

n) converge to a fixed proposal. In

our experience, this almost always happens. However, we now show how to more formally

ensure that the conditions (3) and (4) hold, while the practical performance of the algorithm

remains very much as above. First, we add an extremely heavy tailed component to g0(z)

with a probability that is extremely small. Second, let ḡ0(z) = g0(z) and for n ≥ 1 define

ḡn(z; λ̄n) = (1 − an)ḡn−1(z; λ̄n−1) + angn(z; λn), with an = (1 − γ)/nγ and γ very close

to zero and positive. This means that for n ≥ 1, λ̄n is defined recursively in terms of λ̄n.

Third, we redefine the proposal density as qn(z; λn) = ω1g0(z) + (1 − ω1)ḡn(z; λn). This

ensures that π0(z)/g0(z) and ḡn(z; λ̄n) are bounded in n and z ∈ Z and that the diminishing

adaptation condition holds, i.e.

sup
z∈Z

∣∣∣∣
(

ḡn(z; λ̄n)− ḡn+1(z; λ̄n+1)
)

/g0(z)
∣∣∣∣ = an .

Section 7 and appendix F of Andrieu and Moulines (2006) give general convergence

results for adaptive independent Metropolis-Hastings and Roberts and Rosenthal (2007)

give an elegant proof of the convergence of adaptive sampling schemes. However, we believe

that readers may find the conditions (3) and (4) and the proofs of Theorems 1 and 2 easier

to understand for the methodology proposed in our article.

6



3 Implementation of the adaptive sampling scheme

This section describes the implementation of the sampling scheme. We anticipate that

readers will use this as a basis for their own experimentation. The adaptive sampling

scheme is run in two phases, a preliminary phase where the conditions for ergodicity are

not enforced and a strict adaptive stage that enforces ergodicity. To make the structure of

the algorithm clearer, we first describe it in pseudo-code and then discuss it in more detail.

Pseudo-code. Let qn(z) = ω1g0(z) + (1−ω1)gn(z), g0(z) = 0.6φ0(z) + 0.4φ̃0(z) ,where φ0(z)

is a mixture of normals, initialized at iteration n = 1 by a Laplace expansion (in which case

φ0(z) is a multivariate normal), or by the prior or by a density estimated from a preliminary

MCMC run if the Laplace approximation is unavailable. The density φ̃0(z) is a mixture

of normals with the same parameters as φ0(z) except that the covariance matrices are

multiplied by 25. Let gn(z) = ω′2g
?
n(z)+ (1−ω′2)g̃

?
n(z) , where g?

n(z) is a mixture of normals

and g̃?
n(z) is a mixture of normals with the same parameters except that the covariance

matrices are multiplied by a scalar k. For notational convenience we omit to show in the

pseudo-code the dependence of the densities qn(z), gn(z) and g?
n(z) on their parameters.

Let An denote the number of accepted MH draws up to but not including iteration n,

and Sn(M) the smallest MH acceptance probability in iterations n−M to n− 1.

1. At iteration n, qn(z) is used as a proposal to update z as in (2).

2. Define the preliminary phase to start at n = 1 and end when Sn(M) > αM . The

density φ0(z) is updated once at the end of the preliminary phase, and set equal to

g?
last, the last estimated mixture of normals in the preliminary phase.

3. The mixture of normals g?
n(z) is set equal to g?

n−1(z) unless An > 5 dim(z) and either

• n − n? belongs to a predetermined set of positive updating times given below,

where n? = n : An = 5 dim(z), or

• The average MH probability in the last L iterations is lower than αL (preliminary

phase only).

4. Otherwise g?
n(z) is updated as in section 4 and appendix 1.
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We set k = 16, ω1 = 0.05, ω2 = 0.15, ω′2 = ω2/(1−ω1), L = 10, αL = 0.1,M = 20, αM = 0.02.

End of pseudo-code

We find these values of k, ω1, ω2, L, αL,M and αM work well, but we do not claim they

are optimal. We conjecture that the speed of convergence and efficiency of our sampler can

be further improved with a more careful (and possibly adaptive) choice of these parameters.

Any other value of k in the range 9 to 25 and of ω1 and ω2 in the range 0.05 to 0.3 worked

well for the examples given in the paper.

During the preliminary phase, we first estimate the k-harmonic means mixture after a

given number of accepted draws in order to ensure that the estimated covariance matrices

are positive definite and estimated with sufficient accuracy. When there are 2 to 4 unknown

parameters as in the inflation example we first estimate the k-harmonic means mixture after

20 accepted draws. If our parameter space is bigger then we would increase that number

appropriately. The estimation after a given number of accepted draws is only done once

throughout the sampling scheme. We then re-estimate the mixture after 50, 100, . . . , 350,

400, 500, . . . , 1000 and then every 1000 draws thereafter. We also recommend updating

the proposal in the preliminary stage following a period of low acceptance probabilities in

the MH step. Specifically, we re-estimate the mixture parameters if the average acceptance

probability in the last L iterations is lower than αL, where we set L and αL as above.

Low acceptance probabilities signal a poor fit of the proposal, and it is therefore sensible

to update the proposal to give it a better chance of covering the area around the current

parameter value. Since it is unclear that this does not violate any of the conditions required

for the ergodicity of our adaptive sampler, we limit the updating of the proposal at endoge-

nously chosen points to the preliminary phase, after which the proposal is updated only at

predetermined intervals. The end of the preliminary adaptation phase could be set ex-ante,

but we prefer to determine it endogenously by requiring the smallest acceptance probability

in the last M iterations to be higher than αM , where M and αM are set as above. During

the second phase (period of strict adaptation), we update the proposal every 1000 draws.

The updating schedule given above is also not optimal in any specific sense. The princi-

ple is to update more frequently in the initial phases of the chain. We would update more

(less) frequently if the likelihood was very expensive (inexpensive) to compute compared
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to updating the proposal. In our experience, the estimation frequency typically does not

affect the performance of the algorithms dramatically. The fact that we update the proposal

when it has performed poorly in recent iterates is very helpful in this regard since other-

wise the MH can reject for long stretches if the updates are infrequent. Frequent updates

are important if the initial proposal is poor and/or the target distribution is multimodal.

Fortunately, updating the proposal when it is not performing well largely endogenizes the

updating schedule.

The estimation of the mixture of normals can become slow when the number of iterations

is large. To avoid this problem, after 1000 accepted draws we only add every j-th draw to

the sample used to estimate the mixture parameters, where j is chosen so that the mixture

is not estimated on more than 10000 observations.

4 A clustering algorithm for fast estimation of mixtures of

normals in adaptive IMH

Finite mixtures of normals are an attractive option to construct the proposal density because

they can approximate any continuous density arbitrarily well and are fast to sample from

and evaluate. See McLachlan and Peel (2000) for an extensive treatment of finite mixture

models.

However, estimating mixtures of normals is already a difficult problem when an inde-

pendent and identically distributed sample from the target is given and estimation needs

to be performed only once: the likelihood goes to infinity whenever a component has zero

variance (an even more concrete possibility if, as unavoidable in IMH, some observations

appear more than once), and its maximization, whether by the EM algorithm or directly,

is plagued by local modes. Although several authors have made substantial advances in

dealing with these problems (e.g. Figuereido and Jain 2002; Ueda, Nakano, Ghahramani,

and Hinton 2000; Verbeek, Vlassis, and Krose 2003), in our experience the EM algorithm is

not sufficiently reliable when the sample is small and contains a non-trivial share of rejected

draws. The inevitable short runs of rejections give rise to small clusters with zero covariance

matrix at which the EM algorithm frequently gets stuck. Moreover, EM-based algorithm
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are computationally expensive and slow to converge, which makes them less attractive when

the proposal is to be updated frequently.

We have therefore limited our attention to algorithms that estimate mixtures of normals

quickly and without explicitly computing the covariance matrix of each component (for

robustness). Within this class, the k-means algorithm is the most popular algorithm. We

employ the k-harmonic means algorithm, an extension of the k-means algorithm that allows

for soft membership. Degeneracies can be easily prevented, so the algorithm is remarkably

robust even in the presence of a long series of rejections. The number of clusters is chosen

with the BIC criterion. The increase in speed and reliability is paid for with a decreased fit to

the target, as the family of k-means algorithms performs best when an optimal fit requires all

components of the mixture to have the same probability and covariance matrix (see Bradly

and Fayyad 1998, for a discussion). Hamerly and Elkan (2002) show that the performance of

k-harmonic means deteriorates less rapidly than alternatives of similar computational cost

with departures from these ideal conditions. An outline of the k-harmonic means algorithms

is given in Appendix 1.

Although the k-harmonic means algorithm is less sensitive to initialization than either

k-means or EM (Hamerly and Elkan 2002), in an unsupervised environment it is important

to have good starting values. We have found the algorithm of Bradly and Fayyad (1998) to

perform very well and at a low computational cost.

When most parameters are nearly normally distributed, fitting a mixture of normals

to all the parameters is problematic in the sense that the chances of finding a local mode

with all parameters normally distributed is quite high (though depending on the starting

value of course). This is true of clustering algorithms and also of EM-based algorithms. To

improve the performance of the sampler in these situations, we divide the parameter vector

θ into two groups, θ1 and θ2, where parameters in θ1 are classified as approximately normal

and parameters in θ2 are skewed. Our rule of thumb is to place a parameter in the ‘normal’

group if its marginal distribution has |s| < 0.2, where s is the skeweness. Our fattening the

tails of the mixture should handle the kurtosis, though this would optimally be done with

mixtures of more flexible distributions than the normal.

A normal is then fit to the first group and a mixture of p normals to the second. For
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θ1, we can compute the mean µθ1 and covariance matrix Σθ1 inexpensively from the draws.

For θ2, we fit a mixture of normals as detailed below, estimating probabilities π1, ..., πp,

means µ1, ..., µp, and covariance matrices Σ1, ...,Σp. We then need to build a mixture for

θ = {θ1, θ2}. The mean is straightforward: for the normal parameters, all components

have the same mean. The diagonal blocks of the covariance matrices Ωi corresponding to

var(θ1) and var(θ2) for component i are also straightforward. The off-diagonal blocks of Ωi,

corresponding to cov(θ1, θ2) is computed as

Ω12
i =

n∑

t=1

π∗i,t[(θ1,t − µθ1)(θ2,t − µi)]/
n∑

t=1

π∗i,t,

where π∗i,t = Pr(Kt = i|θ2,t) is the probability of θ2,t coming from the i-th component.

If the proposal distribution is normal then it is computationally inexpensive to update

it at every iteration. It is tempting to update a mixture of normals proposal with an

on-line estimation procedure such as the on-line EM algorithm proposed in Andrieu and

Moulines (2006). The advantage of on-line estimation is that the parameters of the mixture

are updated recursively, so the proposal itself is updated at each iteration at a very small

computational cost. However, on-line estimation of the mixture parameters in AIMH has

a number of serious shortcomings. The estimates are inefficient compared to batch esti-

mators because each data point is used only once, which corresponds to requiring a batch

optimization to converge in one step. The loss of efficiency is more severe in small samples,

that is, in the early phases of the chain. Direct estimation of the mixture component covari-

ance matrices often leads to numerical problems in the early phases of the chain given that

rejections in MH produce degenerate clusters. Finally, a limitation of on-line estimators

is related to the fact that they are a form of stochastic gradient descent (see Spall (2003)

for an introduction). When the function to be maximized is multimodal (as is typically

the case with mixtures) on-line estimates are in general sensitive to the order of the draws,

with initial draws having heavier influence than later draws in determining the mode at

which estimates settle down. We have verified empirically that the quality of solutions

given by several on-line algorithms deteriorates rapidly if the initial observations are not

representative of the entire target distribution. This makes on-line algorithms unsuitable

for use in the early, exploratory phases of the chain, though they can work well if the initial
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proposal distribution already provides a reasonably good approximation of the target and

the acceptance rates are sufficiently high.

Since we are opting for batch estimators, it is too costly to update the proposal at each

iteration. We update it at predetermined numbers of iterations, more frequently in the

earlier stages of the chain. Implementation details for the empirical examples are given in

section 3.

We make two further comments on Andrieu and Moulines (2006). First, they propose

to keep the number of components in the mixture constant, whereas we have found it

advantageous to select the number adaptively as outlined in appendix 1. Second, they

outline a proposed approach to using mixtures as proposal densities, but do not report on

the empirical performance of their proposal.

5 Applications

State space models and nonparametric models are ideal initial applications for AIMH

schemes. Although they can have a large number of parameters or latent variables, it

often happens that conditional on a small subset of these, most parameters and latent vari-

ables can be integrated out or have known analytical form from which we can generate

them. It is therefore often possible to draw all parameters in one or two blocks. Exploiting

these features, it is also often inexpensive to find the posterior mode, possibly for a simpli-

fied version of the model, and therefore obtain a reasonable initialization of the proposal

distribution. Finally, the standard approach based on Gibbs and Metropolis-within-Gibbs

can be very inefficient, particularly for state space models (see Fruhwirth-Schnatter 2004).

For each of our applications we checked the results of the adaptive sampling scheme by

re-running the sampler at a number (at least 5) of different starting points using a fixed

proposal based on the last mixture of normals update in the second stage of the adaptive

sampling. In all cases we got very similar results to those obtained using strict adaptation,

where by ‘very similar’ we mean that the posterior means of the parameters were within

three Monte Carlo standard deviations of those obtained using adaptive sampling.

For our examples we define the inefficiency of a sampling scheme as the factor by which

the number of iterates needs to increase to give the same precision (standard error) as a
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sampler generating independent draws. For two sampling schemes A and B, we define the

inefficiency of scheme B relative to A as the factor by which it is necessary to increase the

running time of B in order for it to obtain the same accuracy as A. It is computed as the

inefficiency factor of B times its run time per iteration divided by the inefficiency factor of

A times its run time per iteration.

In the examples below we compare the performance of the AIMH sampler to the following

version of the Haario et al. (2001) adaptive random walk Metropolis sampler proposed on

page 3 of Roberts and Rosenthal (2006). Specifically, let θ be the parameters in the model,

θ̂ the posterior mode and V the variance covariance matrix of the Laplace approximation

to the posterior. Then at iteration j the proposal distribution is given by

Qj(θc, ·) = N(θc, (0.1)2V/d) if j < 5d,

Qj(θc, ·) = (1− β)N(θc, (2.38)2Σj/d) + βN(θc, (0.1)2Id/d) if j ≥ 5d,

where N(θ, V ) is the normal density with mean θ and covariance matrix V , θc is the current

value of θ, d is the dimension of θ, β = 0.05 and Σj is the current empirical estimate of the

covariance matrix of the target distribution based on the iterates thus far. In all cases we

initialized this sampler at the posterior mode.

5.1 Time-varying parameter autoregressive models

Consider the following time-varying parameter first order autoregressive (AR(1)) process

(the extension to a more general autoregressive process is straightforward):

yt = ct + ρtyt−1 + σεεt , ct = ct−1 + λ0σεut and ρt = ρt−1 + λ1vt, (8)

where εt, ut, vt are all nid(0, 1). The model has three parameters (σ2
ε , λ

2
0, λ

2
1), while c0 and

ρ0 can be treated either as parameters or (our choice) as states. Given conjugate priors

(inverse gamma for the parameters, and normal for c0 and ρ0), Gibbs sampling is straight-

forward (Carter and Kohn 1994). Fruhwirth-Schnatter (2004) reports that based on the

autocorrelations of the iterates, Gibbs sampling can be very inefficient for these models. In

the following application we also find that the Gibbs draws are highly autocorrelated and,
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by comparing posterior statistics from Gibbs sampling and from our AIMH, we also find

that the autocorrelations do not reveal the full extent of the problem.

5.1.1 Application: US CPI inflation

We apply the model to quarterly U.S. CPI inflation for the period 1960-2005 (184 obser-

vations). The annualized quarterly CPI inflation is defined as 400(Pt/Pt−1 − 1), where Pt

is aggregated from monthly data (averages) on Consumer Price Index For All Urban Con-

sumers: All Items, seasonally adjusted, Series ID CPIAUCSL, Source: U.S. Department

of Labor: Bureau of Labor Statistics. We use rather dispersed inverse gamma priors for

σ2
ε , λ

2
0, λ

2
1 with a common shape parameter of 1. The scale parameters are defined by setting

the modes of the priors close to maximum likelihood estimates: σ2
OLS for σ2

ε (where σ2
OLS

is the residual variance from an AR(1) model estimated by OLS), at 0.01σ2
OLS for λ2

0 and

at 0.0012 for λ2
1. The modes of λ2

0 and λ2
1 are centered at the maximum likelihood estimates

to ensure that the bimodality in the posterior distribution of the log of λ2
1 documented in

Figure 2 is not induced by the prior.

For given parameters, the likelihood is easily computed via the Kalman filter. It is

therefore simple to find the posterior mode, at which the chain is initialized. Posterior

mode values suggest that time variation is nearly absent.

Starting with Gibbs sampling, we draw 40 000 times after a burn-in of 5000. The re-

cursive parameter means seem to settle down (not reported) and the posterior distributions

are in line with a normal approximation taken at the mode, suggesting a persistent AR(1)

with little sign of parameter variation (see Figure 1). It may therefore seem reasonable to

assume that the chain has produced a sample representative of the entire posterior.

However, the AIMH scheme tells a different story. The proposal is initialized at a mixture

of two normals g0(z) = 0.5φ(z; µ̂, Σ̂) + 0.5φ(z; µ̂, 16Σ̂), where µ̂ is the posterior mode and

−Σ̂ is the inverse of the Hessian of the log-posterior evaluated at µ̂. The AIMH soon

discovers that the posterior distribution of log(λ2
1), not to mention λ2

1, is highly non-normal

(see Figure 2), with substantial probability mass around a second mode corresponding to

non-trivial amounts of time variation in ρt and a lower ρ1.

We also ran the adaptive random walk Metropolis sampler outlined at the start of the
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section. The sampler settles down to an acceptance rate of 20% and obtains the correct

posterior distribution, and in particular finds both modes. Table 1 gives the inefficiency

factors for all three samplers as well as the inefficiency factors of the Gibbs and ARWM

relative to AIMH. The table shows that the AIMH sampler is appreciably more efficient

than the other two samplers.

5.2 Additive semiparametric Gaussian models

In this example we consider the additive semiparametric regression model with Gaussian

errors, with some of the covariates entering linearly and the others entering more flexibly

yi =
m∑

j=1

γjzji +
H∑

h=1

fh(xh,i) + σεεi ; (9)

the εi are nid(0, 1) and z is a vector of regressors that enter linearly. The xh, h = 1, ..., H

are covariates that enter more flexibly by using the quadratic polynomial spline functions

fh(xh,i) = β0,hxh,i +
J∑

j=1

βh,j(xh,i − x̃h,j)2+ = β0,hxi + gh(xh,i), (10)

where x+ = x if x > 0 and 0 otherwise and {x̃h,1, ..., x̃h,k} are points (or ‘knots’) on the

abscissae of xh such that min(xh) = x̃h,1 < ... < x̃h,J < max(xh). In this paper we choose

30 knots so that each interval contains the same number of observed values of xh. For a

discussion of quadratic spline bases and other related bases see chapter 3 of Ruppert et al.

(2003). We assume that a global intercept term is included in z in (9) and for simplicity we

include the parameters βh,0, h = 1, . . . , H in the vector γ and xh, h = 1, . . . , H as part of

the vector z. This transforms the nonparametric model into an highly parametrized linear

model

y = Z̃γ̃ + ε. (11)

The prior for the linear parameters γ is normal with a diagonal covariance matrix γ ∼
N(0, v2

γI), where vγ can be set to a large number. It is also convenient to assume a normal

prior for the nonparametric part, with all parameters independent and βh,j ∼ N(0, τ2
h), , j =
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1, ..., J, h = 1, ..., H. However, with this prior there is a high risk of over-fitting if we simply

set τ2
h to a large number. The variance τ2

h is often chosen by cross-validation, but in a fully

Bayesian setting we can treat τ2
h as a parameter. To illustrate the advantage of AIMH in

working with different priors, we experiment with two options for the prior τ2
h . The first

prior is log-normal and rather dispersed: ln(τ2
h) ∼ N(0, 52), the second is inverse gamma

with shape parameter 1 and scale parameter implied by setting the mode at 0.12. The

prior for σ2
ε is inverse gamma with shape parameter one and scale parameter implied by

setting the prior mode at the OLS residual variance estimated on (11). The prior for γ̃ =

(γ, β1, ..., βH) is therefore jointly normal conditional on τ2 = {τ2
1 , .., τ2

H}, γ̃|τ ∼ N(0, Vγ̃(τ)),

where Vγ̃(τ) = diag(v2
γI, τ2

1 , I, . . . , τ2
HI) is a block diagonal matrix. One way to estimate

the posterior density of the semiparametric model is to use Gibbs or Metropolis-within-

Gibbs sampling as proposed by Wong and Kohn (1996). In this approach the parameters

γ̃ = {γ, β1, ..., βH} are conjugate given θ = {σ2
ε , τ

2
1 , ..., τ2

H}, and σ2
ε is conjugate given γ̃.

Each variance τ2
h can be updated with a Gibbs step for the inverse gamma prior, or with

a Metropolis-Hastings step for the log-normal prior. In this second case, we use a Laplace

approximation of p(ln(τ2
h)|βh), which is very fast to compute using analytical derivatives.

However, the correlation between τ2
h and {βh,1, .., βh,J} could be quite high using either

prior for τ2
h . In addition, using a log normal prior for τ2

h leads to high rejection rates in

the Metropolis-Hastings step when generating the τ2
h in the Boston housing data example

of section 5.2.1. Both problems are elegantly solved by integrating out γ̃ and generating θ

as a block using an efficient AIMH sampler.

The next example shows how to update all parameters in one block with an efficient

AIMH sampler. We first note that, conditional on θ, γ̃ can be integrated out, making it

possible to compute p(θ|y) ∝ p(y|θ)p(θ), where y|θ ∼ N(0, σ2
ε I + Z̃Vγ̃(τ)Z̃ ′).

5.2.1 Application: Boston housing data

We use the Gaussian semiparametric model to study the Boston housing data introduced

by Harrison and Rubinfield (1978) and analyzed semiparametrically by Smith and Kohn

(1996). The dataset is available at www.cs.utoronto.ca/˜delve/data/boston and has 506

observations. The dependent variable is the log of MV , the median value of owner-occupied
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homes. We use all 13 available covariates (see Smith and Kohn or the web-site for a full

description) in the linear part and the following six in the nonparametric part (Smith

and Kohn use only the first five): X5 = NOX, nitrogen oxide concentration, X6 = RM,

average number of rooms, X8 = DIS, logarithm of the distance from five employment

centers, X10 = TAX, property tax rate, X13 = STAT, proportion of the population that is

lower status, X1 = CRIM, per capita crime rate by town.

The proposal distribution for the seven parameters θ = {ln(σ2
ε ), ln(τ2

5 ), ..., ln(τ2
1 )} is

initialized by fattening the tails of the Laplace approximation. To find the Laplace ap-

proximation, we simply apply Newton-Raphson optimization (with numerical derivatives)

to ln p(y|θ) + ln p(θ), which involves no extra coding effort since both densities are needed

to compute the MH acceptance ratio. Figure 3 provides results for the case of a log-normal

prior on τ2
h , h = 1, ..., H and shows that the acceptance rate quickly improves and stabi-

lizes at around 60% when all seven parameters are updated jointly. Most parameters are

approximately lognormally distributed, except those connected to the variables TAX and

CRIM , which benefit from the added flexibility of mixtures. The correlation matrix of the

smoothing parameters {ln(τ2
5 ), ..., ln(τ2

1 )} is nearly diagonal. This suggests that the AIMH

could handle large numbers of smoothing parameters efficiently by updating them in blocks

(with a different proposal density estimated adaptively on each block), since the blocks

would be nearly independent of each other.

Table 1 reports the inefficiency factors for both the Gibbs sampler and the AIMH sampler

for both inverse gamma and log normal priors, as well as the inefficiency of the Gibbs

sampler relative to the AIMH sampler. The table shows that in terms of relative efficiency

(defined at the beginning of section 5), the AIMH is about 40% more efficient than the Gibbs

sampler when both samplers use the inverse gamma prior on τ2
h , and nearly seven times

more efficient when both samplers use the log-normal prior. Reported results are for the

average inefficiency factors (over both h and i) of fh(xh,i). Looking at the autocorrelation

of the log-parameters gives similar inefficiency ratios.

We also applied the adaptive random walk Metropolis sampler to this data set, but could

not make it work well. With the sampler initialized at the posterior mode, the acceptance

rate started at over 50%, but within a few hundred iterations fell to below 1% and stayed
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there indefinitely. We do not report any inefficiency factors for this sampler because we

do not believe that inference is reliable with such a low acceptance rate. We conjecture

that the poor behavior of the ARWM sampler in this example compared to the other two

examples is because this example has 7 parameters whereas the other two have 3 and 2

parameters. In addition, the second derivatives of the log posterior in this example are far

from constant, so a unique covariance matrix may do very poorly. By contrast, a mixture

of normals allows for local correlations between the parameter and therefore may be less

affected.

Boston mean fh(xh,i) Inflation log(σ2
ε ) log(λ2

0) log(λ2
1)

AIMH, IG 2.6 AIMH 6.7 2.8 6.1
Gibbs, IG 6.3 (1.4) Gibbs 9.4 (1.3) 113.3 (37.4) 156.4 (23.7)
AIMH, LN 1.6 ARWM 21.5 (3.1) 23.5 (8.3) 23.6 (3.8)
M-Gibbs, LN 18.4 (6.8)

Table 1: Inefficiency factors for the semiparametric (Boston) and state space (inflation)
models, together with the inefficiencies of the Gibbs sampler and the ARWM relative to the
AIMH sampler in brackets. AIMH: adaptive independent Metropolis-Hastings; M-Gibbs:
Metropolis-within-Gibbs; and ARWM: adaptive random walk Metropolis. IG and LN:
inverse gamma and log-normal priors for the Boston data.

6 Discussion and conclusion

In order to understand the strengths and limitations of our sampler, we find it useful to

consider two desirable qualities of an adaptive IMH scheme. First, given a sufficiently large

sample drawn from the target, we wish to construct a proposal density which fits the target

as well as possible. This is an approximating ability: we want to accurately ‘map’ the areas

that we have already explored. Second, we wish the sampler to perform as well as possible

when the initial proposal fails to cover part of the support of the target distribution. This

is an exploring ability: when we propose in a region where our map is poor, we want to

explore that region and quickly update our map.

For example, using a normal proposal when the target is highly non-normal results in

little approximating ability. Updating the proposal only once or very rarely results in little

exploring ability, since the proposal reacts slowly or not at all to the information that it is

fitting poorly at a given point.

18



Our sampler has several characteristics designed to enhance its exploring ability. Fre-

quent updating, particularly at early iterations, and updating following a sequence of low

MH acceptance probabilities quicken the pace at which the proposal adapts to the infor-

mation that it is not fitting well in a certain area. Long tails are useful not only to satisfy

(3) and (4), but also to improve the chances of venturing into unexplored parts of the state

space. Finally, mixtures are ideally suited for this exploration because a new component

can be centered on a value causing a sequence of rejections. The long runs of rejections

that can plague standard IMH are therefore much less likely using our AIMH sampling

scheme because the proposal distribution is updated frequently and will accommodate the

cluster of rejections by changing the mixture parameters or adding a new component. If

our sampler makes a move in a region where the proposal fits poorly, it should therefore be

able to explore it. Of course as the parameter dimension increases, if the initial proposal

fails to cover a region we may never explore that region simply because the probability of

making a proposal there is too small.

The most interesting applications arise when current best practice is inefficient or cum-

bersome and, in our opinion, when adaptation starts early. In work in progress we have

worked successfully with 15 to 25 parameters in several real data applications, but in gen-

eral, the number of parameters that it is possible to handle using our approach depends on

the shape of the target distribution.
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Appendix 1: k-harmonic means clustering

We estimate the mixture of normal parameters using the k-harmonic means clustering

algorithm which can be described as follows. (See Hamerly and Elkan 2002, for a discussion).

Let p be the number of clusters.

1. Initialize the algorithm with c1, ..., cp, the component centers. The starting values are

chosen with the procedure of Bradly and Fayyad (1998) . We depart slightly from

Bradley and Fayyad in using the harmonic k-means algorithm (rather than k-means)

in the initialization procedure.

2. For each data point θt, compute a weight function w(θt) and a membership function

m(ci|θt) for t = 1, ..., n as

w(θt) =
∑p

i=1 ||θt − ci||−p−2

(
∑p

i=1 ||θt − ci||−p)2
and m(ci|θt) =

||θt − ci||−p−2

∑p
i=1 ||θt − ci||−p−2

,
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where ||θt − ci|| is the Euclidean or Mahalanobis distance. Following Bradly and

Fayyad (1998), we put a lower boundary ε on ||θt − ci|| (to avoid degeneracies when

trying ||ci − ci||). The membership function softens the sharp membership of the k-

means algorithm, so one observation can belong to more than one cluster in differing

degrees. The weight function gives more weight to observations that are currently

covered poorly (i.e. that are far from the nearest center).

3. Update each center ci

ci =
∑n

t=1 m(ci|θt)w(θt)θt∑n
t=1 m(ci|θt)w(θt)

.

4. Repeat until convergence. This gives the cluster centers, which we take as estimates

of the component means. The other mixture parameters can then be estimated for

i = 1, ..., k as

Vi =
∑n

t=1 m(ci|θt)w(θt)(θt − ci)(θt − ci)′∑n
t=1 m(ci|θt)w(θt)

and πi ∝
n∑

t=1

m(ci|θt)w(θt).

5. The number of clusters is chosen with the BIC criterion given a maximum number (5

in our examples).

We notice that the covariance matrices Vi are only estimated once, after convergence.

k-means type algorithms also differ from the EM algorithm in that they do not evaluate

the likelihood p(θ|c1, ..., π1,V1, ...). This sub-optimal use of information in fact turns out

to be a great advantage for our purposes. Fewer iterations than for EM are needed for

convergence, and each iteration is faster. Even more importantly, the algorithm does not

get stuck in the small degenerate clusters caused by rejections in the sense that, unlike for

the EM algorithm with freely estimated covariances, these small clusters are not absorbing.

If k-harmonic means does find a degenerate cluster, this causes no trouble for convergence,

and after convergence we can use a predefined matrix in place of any non-positive-definite

covariance matrix (for example, if Vi is not positive definite we set it to 0.52V ar(θ)). If

desired, the mixture parameters can be refined with a few steps of the EM algorithm. In

this case, we recommend not updating the the covariance matrices for the reasons just

discussed.
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Appendix 2: Proofs

The one-step transition kernel for Zn+1 in section 2 is given by

Tn(z, dz′) = αn(z, z′)qn(z′)µ{dz′}+ δz(dz′)(1− νn(z)) (12)

where δz(dz′) = 1 if z ∈ dz′ and is 0 otherwise, and

νn(z) =
∫

Z
αn(z, z′)qn(z′)µ{dz′}. (13)

By the construction of the MH transition kernel,

∫

Z
π(z)Tn(z, dz′)µ{dz} = π(z′)µ{dz′} . (14)

In this section K is a generic constant, independent of n, z and z′. It is convenient to

write any function of z and λ of the form hn(z; λn) as hn(z). Without loss of generality

we assume throughout this section that Z is a discrete space. Exactly the same proof goes

through for the continuous case with summations replaced by integrals. We use the notation

zs:t to mean {zs, . . . , zt} for s ≤ t, with a similar interpretation for Zs:t.

To prove Theorem 1 we first obtain the following two lemmas.

Lemma 1 Under the assumptions of Section 2, for any n, k > 0 and z, z′ ∈ Z,

(a) qn(z) ≤ Kg0(z).

(b) αn(z, z′)qn(z′) ≤ Kg0(z′)

(c) There exists an ε1, 0 < ε1 < 1, such that αn(z, z′)qn(z′) > ε1π(z′) for all z, z′ ∈ Z.

(d) νn(z) > ε1 for all z ∈ Z, where νn(z) is defined by (13).

(e) For k ≥ 1, let ∆n(z, z′) = αn(z, z′)qn(z′)− αn+1(z, z′)qn+1(z′). Then,

| ∆n(z, z′) | ≤ K

(
g0(z′) +

π(z′)
π(z)

g0(z)
)

an. (15)

(f)

| νn(z)− νn+1z) |≤ K

(
1 +

g0(z
π(z)

)
an (16)
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Proof. (a) qn(z)/g0(z) = ω1 + (1 − ω1)gn(z)/g0(z) and the result follows from (3).

(b) follows from (a) and αn(z, z′) ≤ 1. To show (c), note that qn(z)/π(z) ≥ ω1g0(z)/π(z).

From (3), there is an ε1 such that qn(z)/π(z) > ε1 for all z ∈ Z. It is now straightforward

to show that αn(z, z′)qn(z′)/π(z′) > ε1 for all z, z′ ∈ Z. (d) follows from

ν(z) =
∑

z′
αn(z, z′)qn(z′) > ε1

∑

z′
π(z′) = ε1

To obtain (e), it is necessary to consider the following four cases.

Case 1. αn(z, z′) = 1 and αn+1(z, z′) = 1. Then, |∆n| =| qn(z′)−qn+1(z′) | ≤ Kg0(z′)an

by (4).

Case 2. αn(z, z′) < 1 and αn+1(z, z′) < 1.

| ∆n(z, z′) | = π(z′)
π(z)

| qn(z)− qn+1(z) | ≤ K
π(z′)
π(z)

g0(z)an.

Case 3. αn(z, z′) = 1 and αn+1(z, z′) < 1. In this case ∆n(z, z′) = qn(z′)−π(z′)qn+1(z)/π(z).

If ∆n(z, z′) ≥ 0, then

0 ≤ ∆n(z, z′) ≤ π(z′)
π(z)

(
qn(z)− qn+1(z)

)
≤ Kg0(z)anck .

If ∆n(z, z′) < 0, then

0 < −∆n(z, z′) =
π(z′)
π(z)

qn+1(z)− qn(z′) ≤ qn+1(z′)− qn(z′)

Thus,

| ∆n(z, z′) | ≤ K

(
g0(z′) +

π(z′)
π(z)

)
an.

Case 4. αn(z, z′) < 1 and αn+1(z, z′) = 1. This case is similar to case 3.

To obtain (f), we note that

| νn(z)− νn+1(z) | ≤
∑

z′
|∆n(z, z′)| ,
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and the result follows from (e).

With ε1 as in Lemma 1, choose 0 < ε < ε1 and let

Rn(z, z′) =
Tn(z, z′)− επ(z′)

1− ε
(17)

Then, Rn(z, z′) is a one-step transition kernel with the following properties.

Lemma 2 (a)

∑
z

π(z)Rn(z, z′) = π(z′) .

(b)

Rn(z, z′) ≤ Kg0(zn) + ηδz(z′)

where 0 < η < 1.

(c)

| Rn(z, z′)−Rn+1(z, z′) | ≤ Kan

{(
g0(z′) +

π(z′)
π(z)

g0(z)
)

+
(

1 +
g0(z)
π(z)

)
δz(z′)

}

(d)

∑
zn−m+1

· · ·
∑
zn−1

m∏

k=1

Rn−k(zn−k, zn−k+1) ≤ Kg0(zn) + ηmδzn−m(zn)

(e) For 1 ≤ l ≤ j − 1 and j = 1, . . . , n,

∑
zn−l−1

· · ·
∑

zn−j+1

π(zn−j+1)
j−1∏

k=1+1

Rn−j(zn−k, zn−k+1) = π(zn−l)

(f) For j = 1, . . . , n and l = 1, . . . , j − 1,

|
∑

zn−j+1

· · ·
∑
zn−1

π(zn−j+1)
j−1∏

k=l+1

Rn−j(zn−k, zn−k+1)

×
(

Rn−l(zn−l, zn−l+1)−Rn−j(zn−l, zn−l+1)
) l−1∏

k=1

Rn−k(zn−k, zn−k+1) | ≤ Kg0(zn)an−j(j − l)−1
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Proof. (a) follows from (17) and (14). (b) follows from (17). (c) follows from (15) and

(16). (d) is true for m = 1 and is obtained in general by induction. (e) follows from part (a).

(f) follows from parts (a) to (e).

Proof of Theorem 1. Let ∆j , j = 1, 2, . . . be an independent Bernoulli process such

that ∆j = 1 with probability ε and ∆j = 0 with probability 1 − ε. From (17), Tn(z, z′) =

(1− ε)Rn(z, z′)+ επ(z′) so that we can interpret Tn(z, z′) as a mixture of transition kernels,

such that Tn(z, z′) = Rn(z, z′) if ∆n = 0 and Tn(z, z′) = π(z′) if ∆n = 1. For j = 1, . . . , n,

let An,j be the event that ∆n−j+1 = 1, ∆k = 0, k = n − j + 2, . . . , n. Let Bn be the event

that ∆j = 0 for j = 1, . . . , n. Then Pr(An,j) = ε(1− ε)j−1 and Pr(Bn) = (1− ε)n, and

Pr(Zn = zn) =
n∑

j=1

Pr(Zn = zn | An,j) Pr(An,j) + Pr(Zn = zn | Bn) Pr(Bn).

As in the proof of Theorem 1 in Nott and Kohn (2005), we can write Pr(Zn = zn|An,j) =

C0,j + C1,j + · · ·+ Cj−1,j , where

Cl,j =
∑
z0

· · ·
∑
zn−1

Pr(Z0:n−j = z0:n−j)π(zn−j+1)
j−1∏

k=l+1

Rn−j(zn−k, zn−k+1)

(
Rn−l(zn−l, zn−l+1)−Rn−j(zn−l, zn−l+1)

) l−1∏

k=1

Rn−k(zn−k, zn−k+1)

From part (e) of Lemma 2, C0,j = π(zn) and by part (f) of Lemma 2, | Cj,n |≤ Kg0(zn)an−j(j−
l)−1 for j > 1. Using a similar argument to that in Nott and Kohn (2005), this implies that

∣∣∣∣
j−1∑

l=0

Cl,j

∣∣∣∣ ≤ π(zn) + Kg0(zn)(n− j)−r1j2 .

Thus,

n∑

j=1

Pr(Zn = zn|An,j) Pr(An,j) = π(zn)− (1− ε)nπ(zn) + ηn where

| ηn | ≤ Kn−r1

n−1∑

j=1

(
1− j

n

)−r1

j2ε(1− ε)j−1.
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We also have that

Pr(Zn = zn | Bn) =
∑
z0

· · ·
∑
zn−1

q0(z0)g0(z1)
n−1∏

k=1

Rk(zk, zk+1)

≤ Kg0(zn) + ηn−1g0(zn) ≤ Kg0(zn) .

using Lemma 2 (c) and (3). Hence,

| Pr(Zn = zn)− π(zn) | ≤ Kg0(zn)
(

(1− ε)n + n−r1

)
(18)

The proof of Theorem 1 follows.

The proof of Theorem 2 is similar to that in Nott and Kohn (2005) if we use (18).
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Figure 1: Inference for a time varying parameter AR(1) model for US inflation by Gibbs
sampling. (a) marginal distribution of ln(λ0) (b) marginal distribution of ln(λ1) (c) marginal
distribution λ1 (d) inflation plot and mean, estimated as E[(ct/1 − ρt)|y] (e) marginal
distribution of ρ0|y (f) E(ct|y) (bold line) and E(ρt|y).

Figure 2: Inference for the model of figure 1 by adaptive IMH. The interpretation of the
panels is the same as in figure 1.
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Figure 3: Inference for semiparametric model of housing prices by adaptive IMH. First
row: recursive acceptance rate for the last min(it,500) iterations, recursive means of ln(τi),
marginal of σε. Second and third rows: marginals of ln(τi). Fourth and fifth rows: means of
βix + gi(x).
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