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Abstract

This paper studies the efficient allocation in an informationally constrained econ-
omy with production. It reformulates the Atkeson and Lucas (1992) model by in-
troducing a constant return to scale production technology. I show the existence
of an efficient, incentive compatible allocation which strictly improves the welfare
of agents from the autarkic case. In addition, I discuss how the rationale and the
result of this paper can be applied to the related literature as Khan and Ravikumar
(2001) and Atkeson and Lucas (1992).

1 Introduction

Atkeson and Lucas (1992) study the dynamics of agents’ wealth distribution in an ex-
change economy with private information. There is a continuum of agents living in the
economy. Agents face a privately observed idiosyncratic preference shock, which is iden-
tically and independently distributed over periods and across agents. In each period,
agents share a constant amount of consumption goods by reporting their preference type
(history) *. Atkeson and Lucas show the existence of an efficient incentive compatible
allocation and propose a recursive method to characterize it as well. However, the pure
exchange economy environment of the model is not satisfactory enough in the following re-
spects: firstly, macroeconomic study typically involves capital and production in a model,
therefore a natural research question to raise is that whether or not there exists such an
efficient incentive compatible allocation in an economy with capital. Furthermore, the

*I thank professor Edward Green, Kajii Atsushi, and other seminar participants at KIER for helpful
comments. All remain errors are mine.

fSchool of Economics, Fudan University(panjia@fudan.edu.cn)

Tt is equivalent to assume that the agent only makes the preference report of current period, and
the planner can perfectly recall the reporting history of each agent. In later part of this paper, this
assumption is used.



existence of capital may weaken the mutual insurance role that the efficient allocation
plays. Then if there does exist an efficient incentive compatible allocation, whether or
not it can (partially) insure agents against their idiosyncratic preference shocks?

This paper reformulates Atkeson and Lucas (1992) model with capital: assume that the
economy is endowed with some goods only in the initial period and nothing later on. En-
dowment can be used either as consumption or as capital, which produces goods with a
constant return to scale production technology. Similar as in Atkeson and Lucas (1992),
there is also a continuum of agents living in the economy and agents face a privately
observable i.i.d preference shock in each period.

Pareto optimality implies that consumption of agents in any given period only depends
on their current reporting preference types; the higher the marginal utility of current
consumption, the higher the contemporaneous consumption level. However, it violates
agents’ incentive compatibility. Since preference shocks are agents’ private information,
the incentive compatibility problem can be solved by conditioning agents’ current con-
sumption not only on their current reports but also on their reporting histories. Consider
that agents are virtually assigned with the same amount of capital goods initially, which
is addressed as the claim of capital in this paper. Assume that the claim of capital is
publicly observable, then it serves as an incentive device and a recording device as well.
In any period, an agent makes a report about his/her current preference types, then the
consumption today is assigned along with the claim of capital tomorrow. Agents are
induced to report truthfully in the following way: given the same claim of capital to-
day, agents with a higher instantaneous marginal utility value are assigned with more
consumption goods today and a lower claim of capital tomorrow. On the other hand,
agents with a lower instantaneous marginal utility value today are assigned with fewer
consumption goods today but a higher claim of capital tomorrow. Therefore, not only
the claim of capital can be used as an incentive device to motivate agents to truthfully
report their current preference types, but also it summarizes the reporting histories of
agents. Since agents are identical ex ante and preference shocks are i.i.d over agents, it is
enough to consider the representative agent. The aggregate feasibility constraint in the
initial period is satisfied due to the law of large numbers. Moreover, the constant return
to scale production technology and the feasibility of the investment plan imply that the
feasibility constraint are satisfied in each period. In contrast, the recursive problem of the
pure exchange economy model requires tracking agents’ wealth distribution over the time.
Besides, the bellman equation in this paper is different from those in previous literature.
Instead of minimizing the initial resource level to attain some ex ante expected utility
level, I solve the utility maximization problem directly.

Analysis shows that there exists a unique efficient, incentive compatible allocation in
this economy. Furthermore, this allocation can strictly improve agents’ ex ante expected



discounted utility from the autarkic case. The pareto improvement brought by the opti-
mal allocation is due to the improvement of risk sharing among agents rather than the
economies of scale.

The last part of the paper discusses how this paper fits in dynamic contract literature?. In
particular, how this paper relates with Atkeson and Lucas (1992) and Khan and Raviku-
mar (2001): first, this paper reformulates the model in Atkeson and Lucas (1992) by
introducing a constant return to scale production technology®. As a consequence, the
period resource constraints are endogenously determined by the capital level. The higher
the rate of return, the higher the consumption level today as well as the higher the claim
of capital tomorrow. Moreover, no aggregate uncertainty implies that there exists some
rate of return R such that the capital level is constant over the period, thus the aggregate
consumption. In this case, the efficient, incentive compatible allocation in an economy
with capital is feasible in the exchange economy whose endowment level coincides with
the aggregate consumption in the economy with capital. Since the feasible allocation set
of the latter economy is a proper subset of the feasible allocation set of the previous one,
if a latter economy feasible allocation is efficient in the previous one, then it is efficient
in the latter one. Therefore, the existence of an information constrained allocation in an
endowment economy can be shown as a corollary of the results in this paper. Secondly,
the economic environment in this paper is similar to the one in Khan and Ravikumar
(2001) except for the type of shocks that agents face. In Khan and Ravikumar (2001),
agents experience a privately observed income shock and trade with a competitive finan-
cial intermediary. The equilibrium allocation of the model is studied. Nevertheless, it can
be shown that the informationally constrained efficient allocation analyzed in this paper
can be viewed as a competitive equilibrium allocation as well. Ever more, the same logic
of proof can be used to verify the existence of the unique informationally constrained
efficient allocation in Khan and Ravikumar (2001). In addition, there exists a one-to-one
mapping from an economy with income shocks to an economy with preference shocks
such that capital grows at the same rate in these 2 economies under the informationally
constrained efficient allocations. Thus as in the economy with income shocks, incomplete
risk sharing of preference shocks reduces the capital growth rate compared to the full risk

2Related literature include Spear and Srivastava (1987), Green (1987), Thomas and Worrall (1990),
Taub (1990), Phelan and Townsend (1991), and Marcet and Marimon (1992). Different from these
earlier papers, Atkeson and Lucas (1992) study the planner’s problem which involves a period-by-period
constant resource constraint. Moreover, they show that the one-to-one principle agent problem studied
by the earlier literature can be viewed as a decentralized version of the model as they study.

3There is another line of research which studies the incentive compatibility in an economic environment
with capital started with Kehoe and Levine (1993), followed by Kocherlakota (1996) and Alvarez and
Jermann (2000). They tend to explain the existing incompleteness of the social insurance by introducing
the incentive compatibility problem due to limited commitment. It is different from that caused by
private information which is studied in the model here.



sharing case?.

2 Economic Environment

This section offers a formal description of the model. It is a discrete, infinite horizon
model.

2.1 Social Endowment and Production

The economy is endowed with kg units of composite goods in the initial period. Goods
can be used either as consumption or as capital which can be used to produce goods later
at a constant gross rate of return, R > 1.

In each period, returns from the production are divided into 2 parts: current consumption
and later capital. The law of motion of the capital can be expressed by ¢; + ki1 = Rk;.

2.2 Agents

There is a continuum of ex ante identical agents. Agents live for infinite periods. Each
agent faces an idiosyncratic serially independent preference shock in each period. Prefer-
ence shocks are privately observable.

Formally, let A be the space of agents and p be a non-atomic Borel measure on A. With-
out loss of generality, assume that pu(A) = 1.

Let 2 be a sample space and M be the space of preference shocks, M = {6, 62 ... 6V},
where 0! < 6% < ..., < 0V, In addition, let m be the distribution of % on M.

For simplicity, assume that
Assumption 2.1 Vt € N, Va € A, F[Of(w)] = 1.

The preference shock of agent a in period ¢ is a random variable, ©f : 2 — M, and denote
the realization of ©f(-) as 6¢.

Let < 6 >; be the t—period preference type history, < 0 >,= {01,...,6;}, (when t = 0,
< 6 > is a null sequence), M* = {< 6 >;} be the t-fold product space, and m' be the
product measure on M?.

1See Khan and Ravikumar (2001) proposition 2 and the results of numerical simulations.



Accordingly, let 0 be the complete preference history, g = {61,05,...,}, M be the space
of A, and the m*> be measure on M.

In addition, let (5, t) be a node of the preference history, which is defined by a t—period
preference history < 6 >, . In turn, (6,¢) induces N preference histories of (¢ + 1)—period
UéTt as follows,

)

0-;;,15 = {91’“.79“02'}’
where 0 € {0',...,60V}.

Each agent has the preference over the consumption streams, which is ordered by

E[> 670 (w)u(c)). (1)

teN

d € [0,1] is the discount factor and the period utility function wu(-) satisfies the following
assumption:

Assumption 2.2 u(-) : (0,00) — R is an increasing, strictly concave, twice continuously
differentiable function, and lim._,. u'(c) = 0.

2.3 Reporting Strategy

In each period, each agent has an opportunity to report a message about his/her current
preference type. Given the assumption that preference shocks are agents’ private infor-
mation, they may make counterfactual reports.

Formally, denote a reporting strategy of an agent as z = {z,}°,, where z; : M* — M,
satisfies that for all 8, 8’ € M, if

<O >=< 0 >y,

then . .
Zt(< 9 >t) = Zt(< 0/ >t)

Denote the space of reporting strategies as Z.

Definition 2.3 The truth-telling reporting strategy z* satisfies that for any t > 1, 6 €
MOO, Zr(< 0 >t) = Qt.

The rest of the paper is organized as follows: in section 3, the planner’s maximization
problem is formulated in a recursive way and a unique informationally constrained efficient



allocation is shown to exist. Section 4 recalls the exchange economy and shows that the
existence of the informationally constrained efficient allocation in an exchange economy
can be verified as a corollary of the existence results in this paper. Section 5 discusses the
relationship between the preference shock discussed in this paper and the income shock
studied in Khan and Ravikumar (2001). The proofs of this paper are collected in the
appendix.

3 The Informationally Constrained Efficient Alloca-
tion

This section studies the existence of efficient allocation in the informationally constrained
economy with capital. The incentive compatibility problem of agents is resolved by con-
ditioning their contemporaneous consumption not only on current preference types but
their reporting history as well. Moreover, I study the planner’s problem in its recursive
form as the space of reporting histories grows exponentially as time goes by. A bellman
equation is constructed accordingly. The solution to the Bellman equation characterizes
the efficient allocation subject to the incentive compatibility if it does exist. To be noted
that the Bellman equation constructed in this model is different from the one in Atkeson
and Lucas (1992) in 2 aspects. First,it directly maximizes agents’ expected discounted
utility. In addition, capital serves as the state variable of the Bellman equation compared
to the infinite dimension one used in Atkeson and Lucas (1992)°.

3.1 Allocation, Incentive Compatibility and Temporary Incen-
tive Compatibility

To solve the incentive compatibility problem, an allocation® r assigns the consumption

of agents conditioning on not only their current preference report but also their histories

of reports as well. Therefore, an allocation T' = {I'(, £)}52, is composed of a sequence of
functions, I'(0,t) : M* — R,.

Define U (f ,g,t) to be the value function of an agent’s expected utility discounted to
period t, of consumption from period ¢t and afterwards,

U(T,6.t) = B i 67 Gu(T(6,7))] < 6>, (2)

T=t+1

SWithout capital, Atkeson and Lucas (1992) have to use agents’ promised utility distribution as a
state variable of the Bellman equation.
6Since all agents are identical ex ante, in this model, only anonymous allocations are considered.



where Egl-| < g >t] is the expectation taken with respect to # conditional on the prefer-
ence history < # >, . In particular, when ¢ = 0, U (F 0,0) denotes the ex ante expected
discounted utility of an agent given the allocation T

The fact that preference shocks of agents are their private information implies that
an agent’s actual consumption stream depends on his/her reporting strategy, I' o 2 =

{F(Z(g), t)}52,. In turn, the ex ante expected discounted utility of an agent is U(fo,?, g, 0).

An allocation is incentive compatible if for any 6 € M> it is optimal for an agent to
report truthfully”. That is, for any 6 € M, and all 7 € Z,

U(Toz*,6,0)=U(T,0,0) > U( o Z,6,0). (3)

In addition, follow the notion as in Green (1987), an allocation is temporarily incentive
compatible at a node (6,t), if given the preference history < 6 >;_;, it is optimal for an
agent to report truthfully in current period,

Ou(D(G 1))+ 6U(T,

0t 1’

t) 2 0L}, ,0) +0U(L,d}, .t), (4)

et 1’ g,t—1’

for all #¢,07 € M and 6° # 67,

An allocation is temporarily incentive compatible if for any 6 € M, t > 0, it is optimal
for an agent to report truthfully at node (6,t).

Consider allocations that satisfy incentive compatibility (3) and the transversality condi-
tion ® as follows
lim sup |[6*U(T,0,t)| =0 (5)

t—00 ,ez

Denote the space of allocations that satisfy the above conditions as S.

The following lemma states that a temporarily incentive compatible allocation is incentive
compatible if it satisfies the transversality condition (5).

Lemma 3.1 If an allocation r satisfies the transversality condition (5), then T is incen-
tive compatible if and only if it is temporarily incentive compatible.

In this paper, only the truth telling Nash equilibrium is considered. Thus the allocation is defined
by assuming that all other agents are telling the truth.

8 According to the idealized law of large numbers, allocations that violate the transversality condition
assign a positive fraction of agents with infinitely large consumptions. This implies that these allocations
require a infinitely high initial endowment, which are infeasible for any given endowment level k°. Without
loss of generality, I can focus on allocations which satisfy the transversality conditions only.



Note that the reporting strategies studied in this model share a similar structure as those
in Green (1987), thus lemma (3.1) can be shown using the same logic as lemma 2 in Green
(1987). Find the formal proof in the appendix.

Moreover, according to the idealized law of large numbers, an allocation [ is feasible if it
satisfies

B> R0 < K (6)

t=1

3.2 Pareto Efficiency Subject to Incentive Compatibility
The planner’s problem is to look for an allocation [ such that
maxfeSU(f, g,0) (7)

where T satisfies the feasibility condition (6).

Since the cardinality of the set of agents’ reporting histories grows exponentially with the
number of periods ¢, the maximization problem (7) is solved in its recursive form. Suppose
that each agent is virtually endowed some capital goods. Call it as the claim of capital.
The claim of capital is publicly observable. In each period, an agent first makes a report
about his/her preference type in the current period and then he/she receives a message
which includes consumption today as well as the claim of capital tomorrow. Thus, the
claim of capital records the reporting history of an agent.

Formally, let V*(k) be the value function of an agent with k as the initial claim of capital.
For any k£ > 0,

V¥ (k) = sup Eg Y 6" (0,u(I'(0,1)))], (8)

r'es t=0

where [ € S satisfies the feasibility condition
Eo[>  RT'T(6,1)] < k. 9)
t=1

Given the initial claim of capital k and preference type 6%, C} is the current consumption
level and K is the claim of capital in the next period’. Let V(-) be the expected dis-
counted utility function for future, then the temporary incentive compatibility constraint
(4) can be rewritten with the claim of capital k

0'u(C}) + 6V (K}) > 0u(C)) + 6V (K7), (10)

9Note that agents may make counterfactual preference report, however, if the instantaneous arrange-
ment is temporarily incentive compatible, agents would choose to report truthfully.



where 1 # j € {1,2,...,N}.
Let T be a functional operator which is defined on the space of real valued functions'?,
F={VOIV: Ry =R}

T(V)(k)= sup > p'(0'u(Ch) + 0V (K})), (11)

{CLEL N
subject to the feasibility condition,
> P(Ci+ K}) < Rk, (12)

and the temporary incentive compatibility condition,

O'u(Ch) + OV (K}) > 0'u(CL) + 6V (K7, (13)
for any k > 0, 6" # 67 € M.

Lemma 3.2 Let V* be the function defined by equation (8), then it satisfies the functional
equation T(V*) = V*.

See the detail of proof in Appendix.

Define V to be the value function yielded by the allocation [' described as follows: given
the current capital level k, it assigns an agent (R — 1)k as current consumption and k as
the claim of capital in the next period regardless of agents’ preference type. Thus T must
be incentive compatible and feasible according to the idealized law of large numbers. In
addition, V' can be computed analytically: V (k) = 3372 d'u((R — 1)k). Since T’ defined
above is feasible and incentive compatible, thus V (k) < T(V)(k) < V*(k).

On the other hand, define V* to be the value function induced by the full risk sharing
allocation. It is a natural upper bound of the value function V*(k).

Let F? be a subset of F, F* = {V € F|V < V < V*}. It can be shown that the
functional mapping T' defined in equation (11) maps the space F° to itself, i.e. for any

k> 0,and n € N, V(k) < T*(V) < V*(k). Moreover, the monotonicity of T implies
that {T"(V*)(k)}» is a monotone decreasing sequence with V' (k) as the lower bound, thus
according to the monotone convergence theorem, lim,, ., T"(V*) exists. Define V** € F?,

V* = lim T"(V*).

n—oo

In summary:

10To be noted that, functions V € F are not bounded. The contraction mapping theorem does not
apply here. Therefore a weak topology is studied here.

9



Y
A

A

{Agent a with claim of capital of current period £f'.

Agent o observes current preference shock 6,

and makes a preference report z,(< 6 >,).

Agent « receives current consumption CZ?

A

and an updated claim of capital level Kj. if z(< 0 >,) =0

Figure 1: Sequence of events in period ¢.
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Lemma 3.3 For any k > 0, lim,_.. T"(V*)(k) exists. Let V**(k) : (0,00) — R be
defined as follows: )
V*(k) = lim T"(V*)(k), (14)

n—oo

then V** is the mazimal fized point of T on the function space F°.

See the detail of proof in the Appendix.

According to lemma (3.2), V* as defined in equation (8) is equal to V**. Therefore, the effi-
cient, incentive compatible allocation can be characterized by solving the problem 7'(V**).

Note that the temporary incentive compatibility constraints (13) imply that the current
consumption level ¢; is positively correlated with the current preference type 6;.

Lemma 3.4 For any k > 0, if (Cy, K}) is temporarily incentive compatible, then Cj, >
Ci'and V(K'Y > V(KL for alli € {1,...,N}.

See the proof in the appendix.

The following lemma states that the global temporary incentive compatibility constraints
can be replaced by the local temporary incentive compatibility constraints.

Lemma 3.5 If both local upward temporary incentive compatibility and local downward
temporary incentive compatibility are satisfied,

0"u(CP) + OV (K}) > 0"u(CP) + 6V (K,

0"u(CP) + OV (K}) > 0"u(Cp ) + 6V (K™Y,

then the global temporary incentive compatibility constraints as defined in equation (3) are
satisfied. That is, all nonlocal temporary incentive compatibility constraints are slack.

Furthermore, if V' € F is differentiable and strictly concave, then it can be verified that
the local upward temporary incentive compatibility constraints are always binding in the
optimal case. In turn, the conclusion that any nonlocal upward incentive compatibility
constraints and local downward incentive compatibility constraints are slack follows. As a
consequence, the N (N — 1) temporary incentive compatibility constraints can be replaced
by N — 1 equality constraints.

Lemma 3.6 IfV € F° is differentiable and strictly concave, then the solution to problem
(11) satisfies the following statements:

11



(1) (N —1) local downward temporary incentive compatibility constraints never bind. That
is, for allm € {1,...,N — 1},

0"u(CP) + OV (K}) > 0"u(Cy~ ) + 0V (KR, (15)

(2) (N —1) local upward temporary incentive compatibility constraints are always binding.
That is, for alln € {1,...,N — 1},

0"u(CP) + 6V (K}P) = 0"u(Cp) + oV (K. (16)
See the detail of the proof in appendix.

The following 2 lemmas show that V*, the value function of the full risk sharing allocation
is increasing and strictly concave in capital level k. And it is differentiable at any & > 0.
What is more, these properties can be preserved under the functional mapping 7.

Lemma 3.7 The value function V* yielded by the full risk sharing allocation is a differ-
entiable, increasing and strictly concave function.

Lemma 3.8 The functional mapping T maps a differentiable, increasing and strictly con-
cave function to a differentiable, increasing and strictly concave function.

~

For any n € N, T"(V*) is a differentiable, increasing and strictly concave function. Thus
its pointwise limit function V* is increasing and concave. Therefore, the strict concavity
of the period utility function u(-) implies that there exists a unique solution (C*, Ki¥); to
problem T'(V*)(k). It attains the maximum value of the right hand side of equation (11).
In addition, an incentive compatible, efficient allocation can be generated recursively as
follows: in any period ¢ > 1, an agent with the claim of capital k; makes a report about
his/her preference type t'. The current consumption C’,it is assigned along with the claim
of capital ki1 = K.

Theorem 3.9 V**(k) is increasing, concave, and differentiable on (0,00). Moreover, for
any k > 0, problem T(V*)(k) has a unique solution (C}*, Ki*); which attains the mazimum

value V**(k).

In a pure exchange economy, agents in autarky have no way to insure themselves against
preference shocks. However, in an economy with capital, agents are able to use capital
to smooth their consumption process according to their realized shocks. To demonstrate
the pareto improvement from the autarkic case, I analyze consider that each agent is
endowed with the capital goods instead of the claim of capital. Suppose that agents have
the access to the production technology as well. The following proposition states that the
informationally constrained efficient allocation strictly improves agents’ ex ante expected

12



discounted utility from autarky, although they are able to adjust their consumption level
according to their own preference types by adjusting their capital levels.

Thus, the incentive compatible, pareto optimal allocation does offer a partial insurance
against agents’ idiosyncratic preference shocks.

Proposition 3.10 The incentive compatible, pareto optimal allocation strictly improves
the agents’ expected discounted utility from the autarkic case.

The detail of the proof is offered in the appendix.

3.3 An Example

Theorem (3.10) can be applied to a broad class of period utility function, while in this
subsection, a simple example is studied to illustrate the procedure of characterizing an
informationally constrained efficient allocation.

Consider a 2-state preference type space M = {6 0"}, and a CRRA period utility func-
tion u(-), u(c) = %, for v < 0.

Since the production technology is constant return to scale and the instantaneous pref-
erence is iso-elastic, the capital level k is multiplicate to the value function V*, V*(k) =
kEYV*(1), where V*(1) satisfies the normalized planner’s problem defined as follows:

* _ eh (C{l)’y (5 Kh Y/ *
Ve(1) = maxeren gt D +0(KY) V(1))
(Cl)v (17>
+ (1- 29)(9171 +O(K1)TVH(1)),
subject to the normalized temporary feasibility constraint
p(CY + K1) + (1= p)(C1 + K7) = R. (18)

According to lemma (3.6), it is enough to consider allocations that satisfy the binding
local upward temporary incentive compatibility constraint,

((C1) ey — gt LC1)
ATV (1) = 0

0 + S(KMyv(1). (19)

Equation (19) implies that agents with preference type ¢ are indifferent with telling the
truth or not.

13



Let ¢ and A be the lagrange coefficients of equality constraints (18) and (19) respectively.
The FOCs with respect to CI', C1 KI' K! are given as follows:
(p0" +20)(CY)™ = pC;

(20)

(L=p)d' =X ()™ = (1-p); (21)
(p+ AV (1)(KP)! p¢; (22)
(23)

[\
—_

-
((1=p) =NV ()(K}) ™y = ¢(1—p).

Given the set of parameter values (R, 0", 6' p,v, ), the normalized problem (17) can be
solved numerically.

Example 3.11 Let R = 1.2, 8/ = 0.5, 0" =15, p =05, = 0.9 and v = —1. The
numerical solution to (17) is given by V*(1) = —43.4675, C' = 0.202, C! = 0.120 and
K =1.0157, K! = 1.0622.

For comparison, the expected discounted utility value in the autarkic case is VA(1) =
—43.7331,Y1 which is lower than that yielded by the optimal, incentive compatible contract.

4 Revisit the Exchange Economy

The model studied in this paper is the same as the one in Atkeson and Lucas (1992)
except for the existence of production and capital. Capital can be used in a constant
return to scale production technology. Returns from the production are divided into 2
parts, consumption for now and capital for future. Thus a higher rate of return implies
more contemporaneous consumption as well as higher future investment level. Therefore,
if there exists a Ry such that the aggregate consumption in the economy with capital
is constant over time, then the efficient, incentive compatible allocation is feasible in an
exchange economy with the period endowment level equal to the aggregate consumption.
Since the allocation is efficient in a larger set of incentive compatible allocations, then
it must be efficient within the set of feasible and incentive compatible allocations of the
exchange economy environment as well. Therefore, the existence of an efficient incentive
compatible allocation can be shown as a corollary of the results in section 3.

M is the space of shock types, m is the distribution of #* on M, then (M, m) defines
a preference shock. Given the discount factor ¢ and the initial investment level kg, the
aggregate consumption of current period ZipiC’,iO and the capital in the next period,
> piK,io are functions of R, the rate of return of the production.

U The procedure can be found in the appendix.
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Lemma 4.1 There exists a Ry > 1 such that ), K (Ro) = ko.
Find the details of the proof in appendix.

Denote an exchange economy in Atkeson and Lucas (1992) with the constant level of
endowment y, the discount factor 3, and the preference shock (M, m) as (y, 3, M, m).

Correspondingly, denote an economy with a gross rate of return of production technology
Ry, the initial endowment kg, the discount factor d, and the preference shock (M, m) as
(R07 kOa 67 M7 m)

Proposition 4.2 Given (M,m), for any yo > 0, 0 < B < 1, there exists Ry, ko >
0, such that the efficient, incentive compatible allocation of the economy with capital
(Ro, ko, 0, M, m) is feasible, and optimal within the set of incentive compatible allocations

of the exchange economy (yo, 3, M, m), where k° = Rgo_l, 0= %
There is no formal proof of this proposition but the logic can be stated as follows. If
0= %, then agents in these 2 economies have the same time preference across periods.
Given the same preference shock (M, p), lemma (4.1) shows that there exists a Ry such
that the efficient incentive compatible allocation features a constant aggregate consump-
tion in each period. Moreover, since the production technology is constant return to scale,
let kg = Ré’o_l, then the aggregate consumption in each period is equal to yy. Thus this
allocation is feasible in the exchange economy (yo, 3, M, m). Since the efficient, incentive
compatible allocation is optimal in a larger set of incentive compatible allocations. It
should be efficient within the feasible, incentive compatible allocations of the exchange
economy. Therefore, the conclusion that there exists an informationally constrained ef-
ficient allocation in a pure exchange economy described in Atkeson and Lucas (1992)
directly follows from the existence of such an allocation in the economy with capital and

lemma (4.1).

5 Comparison of Preference Shocks and Income Shocks

Khan and Ravikumar (2001) describe a similar economy as the one discussed in this paper
except for the type of shocks. Instead of preference shocks, they assume that agents are
subject to a privately observable income shocks. They demonstrate a way to characterize
the equilibrium allocation of the economy and implement it numerically. However, the
functional mapping studied is defined on an unbounded function space. Thus contraction
property of the functional mapping does not guarantee the existence of an equilibrium
allocation. Although previous literature such as Green (1987) and Atkeson and Lucas
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(1992) have theoretically shown the existence of such an allocation in a similar environ-
ment, further justification has to be made. As a matter of fact, Green (1987) studies
a special period utility function and a special endowment process. These assumptions
induce a special bellman equation. It features that the contraction mapping is additive
separable from the normalized cost minimization problem. In consequence, the logic of
his proof does not work for the model in Khan and Ravikumar (2001). Moreover, since
there is no production in Atkeson and Lucas (1992) and agents have no way to carry
goods over periods, thus the resource constraint studied in their model is different from
the one discussed in Khan and Ravikumar (2001). Therefore, the proof of Atkeson and
Lucas (1992) does not directly apply to Khan and Ravikumar (2001).

Nevertheless, the logic of the proof in this paper analogically works in an economy with
privately observed income shocks. First, consider a real valued function space bounded by
the value function yielded by the autarkic allocation and the one yielded by the full risk
sharing allocation. Note that if there exists an incentive compatible efficient allocation,
then the value function that it generates is bounded by the above 2 functions. Since both
of them might not be bounded, the contraction mapping theorem does not apply here.
However, the monotonicity of the functional mapping implies that the function sequence
induced by iterating the functional mapping on the upper bound function converges to the
maximal fixed point of the functional mapping. As the upper bound function is monotone
increasing and strictly convex, and the functional mapping defined by the informationally
constrained planner’s problem maps a strictly concave, monotone increasing function to
a strictly concave, monotone increasing one, thus the maximal fixed point function is
a pointwise limit of a sequence of increasing and strictly concave functions. Therefore,
it is increasing and concave. Furthermore, due to the strict concavity of period utility
function, there exists a unique equilibrium allocation.

5.1 The Existence of An Efficient, Incentive Compatible Allo-
cation

Formally, assume the same economic environment as the one discussed in section 3 except
that agents face a privately observed income shock in each period, z* € {z%, ..., 2NV}12.
Denote VZ (k) to be the function of an agent’s expected discounted utility value with in-
centive compatibility constraints. Correspondingly, denote the value function of an agent
without incentive compatibility constraints as V;(k), and the value function of an agent
in the autarkic case as V. As in the preference shock case, the optimal allocation in
the autarkic case is incentive compatible and feasible for problem T(V/)(k), therefore,
VA(k) < T(VA) (k) for any capital level k. Moreover, since the full risk sharing allocation
assigns all agents the same level of consumption in each period and the same claim of

12In ?, they consider a 2-state productivity shock. Here we consider a generalization of their model.
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capital for future, it violates agents’ incentive compatibility. Therefore, T'(V7)(k) < Vi(k).

Let F be the space of real valued functions, F = {V|V : R, — R, VA(k) <V(k) <
VZI(k)}. Define a functional mapping Ty : F — F as follows:

T (V)(k) = By Zp"(U(Zik + By) + 0V/ (Y1) (24)
subject to Z
Y PBLY) = 0, (25)
u(2'k +1B,i) +OV(YY) > u(2k+ Bl) +6V(YY), (26)
for all 7 # 7.

Note that T7(V;7)(k) < Vi(k) and VA(k) < Ty(Vi) (k). Moreover, given any f,g € F,
f <92 Ti(f) < Tulg).

Therefore, iterating applying the functional mapping T; on Vi(k), VA < Tr(V;) <
TP (Vi) <...< Vg, foralln € N. Let
Vi) = lim T} (V)). (27)

n—oo

By the same logic as lemma (3.8), V/ satisfies the bellman equation as follows:
Vi) = max  plu(z'k+ By)+0V] (Vi) + (1 —p)(u(z"k + By) + 0V/ (¥}!)) (28)
((BRY[),(BL.Y))

subject to the resource constraint (25) and the temporary incentive compatibility con-
straints (26).

According to theorem 4.8 in Stokey et al. (1989), V7 is a strictly concave, monotone in-
creasing function with a unique solution.

Lemma 5.1 T; maps a strictly concave function to a strictly concave one.

This lemma can be shown with the same logic as lemma (3.8). Find the details of the
proof in the appendix.

Since V7 is a strictly concave function, according to lemma (5.1), V{ = lim, T*(V;) is
a concave function. Moreover, the strict concavity of the period utility function implies
that there exists a unique allocation that maximizes agents utility subject to incentive
compatibility.

13Here f < g denotes that f(k) < g(k) for any k > 0.
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5.2 Equivalence between Income Shocks and Preference Shocks

Khan and Ravikumar (2001) consider a similar economy except that agents face a privately
observed income shock. And they study the competitive equilibrium. Nevertheless, the
informationally constrained efficient allocation in the economy with capital can be equiv-
alently viewed as the outcome of a competitive equilibrium. In fact, suppose that each
agent is endowed with kg units of goods and they transfer them to a financial intermedi-
ary (a bank) at the beginning of the initial period. In later periods, withdrawal can be
made to satisfy their consumption needs. Assume that financial intermediaries compete
on a competitive market, thus the bank maximizes its depositors’ expected discounted
utility subject to the resource constraint. Therefore, the problem of the competitive fi-
nancial intermediary is identical to the planner’s problem. Furthermore, given any income
shock, there exists a preference shock such that capital grows at the same rate in these 2
economies, and vice versa.

Consider the same period utility function as in Khan and Ravikumar (2001), i.e. CRRA
period utility function, u(c) = %, v <1,y 40,

First study the income shock, z € {z', 22}'° where 2! < 22. As in the preference shock
case, the shock history of an agent is fully reflected by the level of his/her claim of capital,
it can be used as the state variable of the value function. On the other hand, agents have
an iso-elastic preference and the production technology is constant return to scale, thus
the capital level does not affect agents’ consumption allocatively. In consequence, it is
enough to study af = V/(1). Denote B to be current transfer of an agent with z = 2¢,
and Y} to be the corresponding claim of capital in the next period, given capital k = 1
at the beginning of period.

Let P: R — R,
oo = o oI sy - (B sy, ao)
subject to
p(BI+Y])+ (1 —p)(Bf+Y?) = 0 (30)
CLBE gy > BB L sagopy, (31)
EABE 4 sagoy > EEED e, (3)

14The same logic also works for logarithm period utility function, however, we need separate analysis.
15The analysis below can be extended to any finite state income shock. For simplicity of illustration,
assume that the state number of the shock is 2.
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Thus the first order conditions of problem (29) can be derived as follows:

P+ BT = pCl 4 ¢l(1 4+ Bl N (22 4 Bl
(1=-p) 2+ B = Q1—p! ="'+ B+ N2+ B!
po(Y! ) var = p¢t 4+ ¢fo(Y] ) yaf — ME(Y) T e
(L=p)o(Y2) yal = (1—p)¢f —¢'6(Y2) yaf + Mo(YE) vaf,

(33)

where M| ¢! 4! > 0 are the lagrange coefficients of constraints (30), (31) and (32) respec-
tively.

The incentive compatibility constraints'® imply that Y > Y{'. In addition, since M\, ¢!
and ¢! > 0, thus ¢! = 0 and ¢! > 0.

Analogously, consider a 2-state preference shock 6 € {6" 0'}, where §' < 0". For the
same reason as in the previous case, it is enough to consider o = VI(1), Ci, the current
consumption level of an agent with § = #°, and K7}, his/her claim of capital in the next
period correspondingly.

Recall the FOCs of problem (17), given by equation (20), (21), (22) and (23),

po"(CT)™t = pA+ g™ (CT) T — v (Cy)

L—p)0'(C1)~" = (1=p)A —60'(CP) " + 46 () (34)
po(KP)"yal = pA+ @o(K}) Iyl — 4o (Ky) " yal
(1=p)s(K1)" el = (1 =p)A—@o(K;) " yal + ¢é(Ki) "~ yal.

Let K" =Y} and K! = Y2 And the above FOC system (33) and (34) are equivalent if,

>
>
—~
Q
=3
~—
3
—

|

= (Z'+B) g
PO = (24 B
gy = (4B g

po"(CY)" + (1 — p)0'(CY)”

(35)
(36)
(37)
c = ; (38)
(39)
(40)
(41)

36
37

[y
—_

p(z2+ Bf)"+ (1 —p)(z* + B})"’

L 40
Cr ay
!

p0"+ (1 —p)d = p"+(1—-p)=1 41

Given the parameter values z!, 2% and p = Pr(z = z'), the solution to problem (29)
(B}, Y!), (B2,Y?)) is uniquely determined. In turn, the value of 8", 6, C* and C! can be
derived according to equations above. Since given 6", 0!, p, the problem (17) has a unique

16See Khan and Ravikumar (2001) for explanation.
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solution which satisfies the FOCs (34) . Therefore, C, C!, K", K! compose the unique
solution to problem (17) with Pr(0 = ") = p, and Pr(0 = 0') = 1 — p.

On the other hand, given the parameter values 6',0" and p = Pr(6;, = "), the solution
to problem (17) ((Ch, K1), (C!, K1)) is uniquely determined, thus the value of 2!, 22 B},
and Bi. In addition, ((Bf,Y}!), (B2, Y?)) compose the unique solution to problem (29).

6 Conclusion

This paper reformulates the Atkeson and Lucas (1992) model by introducing capital.
With a more general period utility function, I show the existence of a unique truth reveal-
ing, pareto optimal allocation in the informationally constrained economy with capital.
The existence of capital modifies the feasibility constraint of the economy and thus the
planner’s problem as well. The characterization procedure is demonstrated with a simple
model economy.

Besides, I show that the existence of the efficient, incentive compatible allocation of the
endowment economy can be verified as a corollary of the existence proof in this paper.
Even more, I show that the logic of the proofs can be used in an informationally con-
strained economy with income shocks as well. Finally, there exists a one-to-one mapping
from an income shock process to a preference shock process such that capital grows at
the same rate in these 2 economies.

Another observation of the incentive compatible, pareto optimal allocation characterized
in this paper is that it makes agents strictly better off from the autarkic case. Since the
production technology is constant return to scale, this pareto improvement is not due to
the economy of scale, but because of the improvement of risk sharing between agents.
Therefore it is of interest to implement it as an equilibrium result of some mechanism.
With the same message space, a direct mechanism could be a natural candidate. Ac-
cording to the revelation principle, the efficient, incentive compatible allocation can be
supported as a Bayesian Nash equilibrium result. However, how to design a direct mecha-
nism such that it can be uniquely implemented is of particular interest for further research.

7 Appendix

7.1 Proofs
Proof of lemma (3.1).
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Define a consumption plan T to be (5, t) incentive compatible if an agent truthfully re-
ports a t—period preference history (5, t), then it is optimal for him/her to tell the truth
thereafter. Denote a (6, ¢) incentive compatible allocation as [(,t) — i.c.]. Formally, T is
[(0,t) —i.c] if

U(T,0,t) = max{U(T 0 Z,0,t)| < Z(0) >=< 6 >,}.

In particular, if a consumption plan is incentive compatible,

—

U(T,6,0) = max{U(T 0 7,6,0)|Z € Z},
then it is [(4,0) — i.c..

Proof According to the principle of optimality as in Bellman(1957), if an allocation r
is incentive compatible, then given any node (6,t), it is [(0,t) — i.c.]. Moreover, it is both
[(Egt, t+1) —i.c.] and [(5gt, t+1) —i.c.]. Hence it is temporarily incentive compatible at

(0,1).
For the inverse direction, it can be shown by contradiction.

Suppose there exists a consumption plan f, which is temporarily incentive compatible
at any node (5, t), and satisfies the transversality condition. However, it violates the
incentive compatibility condition (3). Thus there exists a reporting strategy 2z such that
U(Toz46,0)> U(T,0,0).

Consider a reporting strategy 2" which is defined as follows:

() = zj(< 0 >,), ?ft <n;
0;, if t > n.

Thus

Ul 02",0,0)=Ey | Y _0'0u (@0 zt)| +0"EV/(T,0,n).

t<n

Since T satisfies the transversality condition (5), let ¢ — oo,

lim U(T o 2°,6,0) = U(T o Z,6,0).

n—oo

Choose n is large enough, such that U(f 02z"6,0) > U(f, 6,0).

+) # 0.}. Consider another reporting strategy 2/, for all

Assume t = max{7|z (<
" >, ) for any r # t, z;(< 6 >;) = 6. Since [' is temporarily

0
g e M>, Zh(< f>,)=z2"(<

>
6

(
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—

incentive compatible at any node (5, s), U(f 0z, 0,s) > U(f 0.0, s), which is a contra-
diction. [

Proof of lemma (3.2):
Proof For any given k > 0, first to show V*(k) > T'(V*)(k).
Suppose not, then there exists some k& > 0, and €9 > 0 such that T'(V*)(k) — V*(k) > .

According to the definition of T'(V*), there exist (Cf, K})X, such that the temporary
incentive compatibility constraints are not binding and

€0

T(V*)(k) — (Zplé”u(Ci) + 5V*(K,i)> < 5

Consider an allocation T' as follows: in the first period, it assigns agents who report 6
with CY as contemporaneous consumption.
Let

€= min{%o,em,for alli#£j5€e{l,...,N}},

where ¢;; = 0u(Ci) + 6V (K}) — 0u(Cl) — SV (KJ). According to the definition V*(-),

for each 4, there exists an incentive compatible allocation I' which is feasible with initial

capital K} and satisfies U(T ,6,0) > V*(K}) — £. For all t > 1, let T'(0,¢ + 1) = T%(6, )
if 6, = 6. Since L is temporarily incentive compatible at any node (5, t) for all t > 1, so

-1

is T'. When ¢ = 1, according to the definition of I |

. ) =t . . =]
Oiu(CL) + sU(T ,0,0) — 0'u(CY) — sU(T ,d,0) > 0,

for all 4,5 € {1,..., N}. Thus it satisfies the temporary incentive compatible constraints

at any node (0,0). In addition, since I' satisfies the transversality condition (5), ' satis-
fies the transversality condition (5) as well. Therefore according to lemma (3.1), I is an
incentive compatible allocation.

However, the expected discounted utility yielded by allocation T is larger than V*(k) T,
00 ~ o

E 80T (0, 1)) — V*(k) > =
oS00 =V ) > T,

which is a contradiction to the definition of V*.
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Next to show that for any & > 0, V*(k) < T(V*)(k).
Suppose not, then there exits some k > 0, and €y > 0 such that V*(k) — T'(V*)(k) > &.

According to the definition of V*, there exists an allocation which satisfies
9] . ‘o
(k) — B 600 —.
V(k) 9[; w(l(O)] < 5

Let Cf = F(&;}vo, 1), and Kj = E5[> 2, R‘T(&étﬂ)wl = 0]. The feasibility and incentive

compatibility of r imply that (C%, Ki)N, are feasible and temporarily incentive compatible
in the initial period. Therefore,

(Zpiewc@ . W*(K,i)) —TV ) > 2,

=1

which is a contradiction to the definition of 7°(V*). This completes the proof. [

Proof of lemma (3.3):

Proof

First to show that 7" maps the function space F? to F? itself.

Let V(-) € T, for any given k > 0, T(V)(k) can not be greater than V*(k). Otherwise, it
implies that given the initial capital level k, there exists an allocation which yields agents
a higher ex ante expected discounted utility than that of the full risk sharing case, which
contradicts the definition of V*. Moreover, T(V)(k) > V (k) since assigning (R—1)k to all
agents regardless of their preference types is feasible and incentive compatible. Therefore,
if V€ F¥, then T(V) € FP ie. V< T(V) < V=17

Next, it can be verified that a fixed point of T in F? can be found by iterating 7' on V*.

Follow the previous argument, T(V*) < V*. By the monotonicity of T, T"(V*) <
1 (V*) < ... < V* On the other hand, T"(V*) > V, for all n € N. According to
the monotone convergence theorem, for any k& > 0, lim,,_,., 7" (V*) exists. Define

Vv (k) = lim T"(V*)(k). (42)

n—oo

Therefore, V** = T(V**) is a fixed point of T" in F?.

Finally, it can be shown that V** defined as in equation (42) is the maximal fixed point

of T in F?.

For any Vi, Vs € FP, denote Vi < Vs if for any k > 0, Vi (k) < Va(k).
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Suppose not, then 7" has an another fixed point V4 such that for some £ > 0, Vo(k) >
V**(k). By monotonicity of 7', for some n large enough, 7" (Vp)(k) > T™(V*)(k), which is
a contradiction. [J

Proof of lemma (3.4):
Proof Recall the temporary incentive compatibility condition (13). In particular, con-
sider i =n, j =n — 1, then
0"u(CP) +0V(Ky) = 0"u(Cp 1) + 0V (K ™) (43)
0" u(CPY) + SV(KETY > 07 u(CF) + V(K (44)
Subtract equation (44) from equation (43),

0" (u(Cp) —u(Cy ™)
o(V(E™) = V(KY) (45)
0

g™ > 0"t implies that u(C?) —u(Cy™") > 0, and V(K ) — V(K}) > 0. Moreover, since
u(+) is a strictly monotone increasing function, C? > Cy~*. O

Proof of lemma (3.5):
Proof In fact, if local downward and local upward temporary incentive compatibility
are satisfied,

0'u(C}) + 0K (CF) > 0u(C ) + SK(C ),

and
Hi_lu(C’,i_l) + (5K(C’,i_1) > Qi_lu(C,i) + 5K(C,i),

then
0" (u(Cy) —w(Cy)) = (VKT = V(). (46)

In addition, . . ' .
0 (u(C7Y) —u(Cy7?) > 0 (w(CT) —u(Ci7?))
> V() = V(ET),
where i € {2,...,N}.
Add inequality (46) to inequality (47),
0" (u(Cy) — u(Cy)) > 6(V (K 7) = V(KG).
Rewrite the inequality above

0'u(C}) + 6V (Ky) > 0'u(C)%) + SV (K, 2).
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It implies that the temporary incentive compatibility constraint (13) is slack for i,j €
{1,...,N} and i — j = 2. Moreover, the above steps can be repeated for all j < i — 1.
Therefore nonlocal temporary incentive compatibility constraints are slack for all 7,7 €
{1,...,N}and i —j > 1.

A similar argument applies for all nonlocal temporary incentive compatibility constraints
forall j—i>1. O

Proof of lemma (3.6).

Proof Since V' is concave and differentiable, let
L(CY ..., 00 KL o K2 A2 AN AL, AN be the lagrange function,

L(CL, . O K K G A, A AT
= L p(0u(Ch) + 0V (K})) = (X, p'(Ch + K}) (48)
— i N (OU(C}) + SV () — 07u(C]) — 6V (K.

The statement (1) and (2) can be verified together. In particular, it is enough to show
that when j =i+ 1, M) > 0, and when j =i —1, Al = 0.

Moreover, according to inequality (45), /\f )\2 =0, for all |i —j| = 1. Consider the following
cases: 4
1) Suppose A\it' =0, and A, ; = 0, then

0 (u(C) — u(Cr)) > O(V(KG) = VIGT) > 0 (u(Cy) — u(Cy)).
Take the first order derivative of the lagrange function
L(CE, ..., Cr K K N A A, AT
with respect to K} and K1,

V'(K;) = ¢
V(K = ¢

Since V is strictly monotone increasing in k, V/(K}) = V/(K}') implies that K} = K,
which is a contradiction.

2) Suppose AL, ; >0, and \i*! =0, for i € {1,..., N — 1}, then the first order derivative
of the lagrange function

L(CE ..., CR KL K GO NN AT
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with respect to K} fori=1,..., N

- Az
V' (Ky)(1— Ij) = G
/ i Aé—l /\271 :
SVI(K)(1— +——) = ¢ fori=2...,N—1

: %
N AN-1

SV(K)) (1 + p—N) = (.

Therefore, V/(K}) > V'(K}). Since V is an increasing and concave function, it implies

that K < K[, which is a contradiction.
Therefore, A} > 0 if and only if j =i+ 1. O

Proof of lemma (3.7): )
Proof [t is straight forward to tell that VV* is increasing in capital level k.

For concavity, consider any k', k% > 0. Let I:kl be the first best optimal allocation when
the initial capital is k*. Then for any a € (0,1) Ty = al'y1 + (1 — )T is a feasible
allocation with the initial capital level k = ak! + (1 — a)k?.

Moreover, since u(-) is a strictly concave function, for all ¢ > 0,
au(Tp(6,1)) + (1 — a)u(u(Tye(6, 1)) < u(alp(0,t) + (1 — a)Tx(6, 1)),

where equality holds only for & = 0 or 1. Thus aV* (ki) + (1 — a)V*(ky) < V*(aky + (1 —
O[)ICQ).
For differentiability, choose € > 0 small enough. For any k' € O(k,¢), define

kK —k
N

W)= pu(Cy + )+ OV (KL).

Thus W (k') < V*(K'), for all k' € O(k,¢), and the equality holds when k' = k.

~

According to lemma 1 in (Benveniste and Scheinkman (1979)), V* is differentiable at any
E>0. U

Proof of lemma (3.8):

Proof It is straight forward to show that T'(V*)(-) is increasing in k.
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For concavity, consider k', k* > 0 and « € [0,1]. Let k = ak' + (1 — )k?, and (C}3,
be the solution to problem T'(V)(k?), for j € {1,2}.

K5)
For all € {1,..., N}, choose (C%, K}); such that
u(Cy) = au(Chi) + (1 — a)u(C), (49)

and
V(KL =aV(K5) + (1 —a)V(K}). (50)

Since both u(-) and V(-) are both strictly concave, then
Ch <aCii+ (1 —a)Cp,

and . ' ’

K, <aKp+ (1 —o)Kp.
Let € = Rk — Y, p"(C} + K},), then € > 0, and the equal sign holds only when o = 0 or 1.
Let Ci = Ci + 2, and K! be the same as before. According to lemma (3.5), only local
upward and downward incentive compatibility constraints needs to be checked. According

to assumption (2.2), the period utility function u(-) is concave, the local upward temporary
incentive compatibility constraint still holds

O () —u(Ch) < #(CE) ~ u(C))
— SV (K} — V(KE)).

However, (6}?1, K}); may violate the local downward temporary incentive compatibility
constraint. But since

0 (u(C) — u(Cy)) > oV (IG) = V(K)).

By the continuity of period utility function u(-), for each 4, there exists an €Y > 0, such
that for all 0 < g; < &Y,

PO +2) —u(C+2)) = 0 (G 4+ &) — u(Ch <) = 8(V(IKE) ~ VUEH)).
Let ¢* = min{&, {{};}, and choose Ci = O +¢*, K! as defined in equation (50).
Therefore (C}, K} ) satisfies the feasibility condition and both local upward and downward

temporary incentive compatibility conditions. Moreover,

T(V)(k) = > p'(0'u(C)) + 0V (K})) = aV (k) + (1 = )V (k?), (51)
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where both inequalities hold as equalities only when o = 0 or 1.
Thus T" maps a strictly concave function to a strictly concave one.

For differentiability, the same argument in the proof of lemma (3.7) applies here. There-
fore, for any k£ > 0, T'(V) is differentiable at k. O

Proof of the proposition (3.9):
Proof [t is straightforward to show that V**(k) is increasing in k.

For the concaveness, according to lemma (3.7), V* is strictly concave, and lemma (3.8)
states that T" maps a strictly concave function to a strictly concave one. Therefore, for
any n € N, T"(V*) is strictly concave. Therefore, V**  the pointwise limit function of a
sequence of strictly concave functions is concave.

For the differentiability, for any ko > 0, let &' € O(ko, ), where € > 0 but small enough.
Denote (Cy*, K}*) as the solution to problem T'(V*)(ko). Choose K}, = K;*, and C}, ac-

7

cordingly such that (C},, K7},); satisfy the temporary incentive compatibility and feasibility
condition. Define W (k') as follows:

W(K) = Zpi(Giu(CZ/) + 0V (Ky))- (52)

Thus W (k') < V*(K'), for any k' € O(ko, <), and the equality only holds when k = k.
According to lemma 1 in Benveniste and Scheinkman (1979) V*(-) is differentiable at any
k?o > 0.

The uniqueness of the solution follows from the concavity of V**. Suppose by the way
of contradiction, there exist 2 different solutions to V**(k), (Ci*, Ki¥), (Ci*, Ki*), for any
a € (0,1), then follow the same argument as in the proof of lemma (3.8), it is feasible to
construct a contract such that it will yield a higher V (k) than V**(k), which is a contra-
diction. U

Proof of proposition (3.10):

To compare the ex ante expected discounted utility, first I study the agents’ problem in
autarky. Since all agents are identical ex ante, it is enough to consider the representative
agent: the agent maximizes his/her ex ante expected discounted utility value with the

initial endowment level k. Denote k; as the capital level in each period ¢.

According to the principle of optimality, the Bellman equation of the agent in the autarkic
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case can be written as follows:

VAK) = max > p0u(ChY) + 6VAKY) (53)

CchA KA
subject to the individual feasibility constraint in each period,
0 < o
0 < KA (54)
i, A i, A
forallie{1,...,N}.

Follow the similar argument as the proof of lemma (3.7), it can be shown that V4 is an
increasing, strictly concave and differentiable function.

Let ¢* be the lagrange coefficient of an agent with current preference type #°. Define the
lagrange function as follows

1,A N,A 1,A N,A
LCy, . OV Kt K

= Y P u(C) 1+ SVAKEA) S, GO 1 K. (55)

Then the first order conditions of the lagrange function (55) as follows: for each § € M,

o' (C0Y = ¢ (56)
VAR = (57)

Proof Since the optimal allocation in the autarkic case satisfies individual agent’s in-
centive compatibility and the feasibility condition of the planner’s problem, the expected
discounted utility induced by the incentive compatible, pareto optimal allocation is at
least as high as that in the autarkic case.

Choose Cf. = Ci* — o CN=t =Y 4 o=, for all i < &, where € > 0 is small enough

such that (C’,@, l;:,i)l satisfies the local temporary incentive compatibility constraints. Ac-
cording to lemma (3.5), it satisfies the global temporary incentive compatibility con-
straints. Moreover, let Ki = Ki*, for all i € {1,...,N}. Therefore, (C, Ki); satisfy
equation (12), the feasibility condition of the planner, but not equation (54), the feasibil-
ity condition of individuals.

Moreover,

Yr0uC) = TP

£ TLEWCH - e v o).
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Recall the first order condition of agents problem in autarkic case (56) and (57),
0 (C) = S(VAY (K. (59)
In fact, according to the feasibility condition (54), equation (59) can be rewritten as
i’ (Cit)y = 6(VAY (RE — Cp™Y). (60)

Since u(-), and V4(-) are increasing and strictly concave, 6 > 67 implies that C}’ A s oot
Equivalently, (VA) (R — Ci*) < (VAY(R — C3%). Thus 6%/ (CiY) > 6w (CJA) for all
6" > 6.

Therefore,

vl

S @ (C) - 0V () > 0,

i=1
which implies that C% yield a higher aggregated utility level of current period than C?, K.
Equivalently, according to the idealized law of large numbers, it improves agents expected
utility of current period.
In addition, this step can be repeated for all future periods. In conclusion, the planner
can strictly improves agents expected discounted utility from the autarkic case. [

Proof of lemma (4.1):

Proof In fact, when R = 1, to satisfy current consumption need, the investment level
in the next period ), p'Kj, (1) is less than that of the current period k.

On the other hand, when R is large enough, ). piK,iO(R) > kg. Suppose not, then for all
R>0,(R—1)ky <3, p'C} (R) < Rky. That is,

Jim. zi:p Ci(R) = o0.

Since C} (R) < C} (R) < --- < C(R), then limp_o C[ (R) = co. Claim that for all 4,
C,(R) — o0 as R — oo.

In fact, recall the FOCs of problem (28),

plu (G (R))0 = pr(B) + MO (R)u'(C, (1) | -
i (Cyy (R0 = piC(R) = Ny (R)0"'u/(Cy (R)) + AT (R)0"/(C, (R))  for i =2,
pzvu (CRIRNBY = pu(R) - Ny, (RO (O (R))
PV (K (R)) = pig(R) + \(R)OV' (K, (R) |
pidV'(K} (R)) = pi(R) — N_y(R)SV'(KJ (R)) + NiT'sV'(Kj (R)) fori=2,...,N 1
pndVI(R(R)) = paC(R) = AV (R)OV' (K (R)

(61)
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According to assumption (2.2), if C}Y (R) — oo, v/(C{(R)) — 0, then according to the
FOC system (56) u'(Cy (R)) = — B Therefore, either ((R) — 0 or \V_,(R) — oo

AN ()

PN
as R — oo.

If ((R) — 0 as R — oo, then for each i, v/(Ci(R)) — 0 as R — oo, which implies that
Ci(R) — oo.

On the other hand, if A} ;(R) — oo as R — oo, then for all 1 <i < N, A\!_(R) — oo as
R — oo. Thus, Cj(R) — oo as R — oo.

This claim can be verified by the way of contradiction. Define iy as follows,
io = min{ilfor any M € N, there exists a R large enough, such that \!_,(R) > M.}.

If2 < iy < N, then there exists some R large enough such that v/ (C}°(R)) = C(F) <

1 20+1
. 1B NOT(R)
’LO piO

0, which is a contradiction.

Sum up FOCs with respect to C}(R),
Zp ) > ¢,

where the inequality sign follows from u'(Ci(R)) < /(C;™ (R)).

On the other hand, since Y, p" K[ (R) < k, there exists some ko such that K} (R) < ko for
all i. Therefore, sum up the FOCs with respect to K} (R),

V' (ko) < ZW’(K;@(R)) <,

where the inequality sign follows from V'(K}(R)) > V'(K;t'(R)) and the concavity of V.
However, as R — oo,

V'(ko) < Y _p'V'(Ki(R) < ¢ < ) p'd/(C(R)) — 0,
which is a contradiction. This completes the proof. [

Proof of lemma (5.1):

Proof We need show that if V' is a strictly concave function, then 7'(V') is a strictly
concave function. That is, if for any & # k" > 0, r € (0,1), k = vk’ + (1 — r)k”,
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rV(E)+ (1 —=r)V(K") < V(k), then v T'(V)(K') + (1 —r)T(V) (k") < T(V)(k). And equal-
ity holds if and only if » =0 or 1.

In fact, let (B}, Y})); and (B}, Y}); be the solution to the maximization problem (24)
with investment level k' and k” respectively. Now consider a solution candidate of that
problem with investment level k.

Since u(-) is strictly concave, it is possible to choose Bl < rBi, 4 (1 — r)BL, such that
w(z'k + BL) = ru(z'k + BL) + (1 — r)u(z*k' + Bi,). Similarly, since by assumption V;
is a strictly concave function, there exists a Y, < r¥j, 4 (1 — )Y}, such that V;(Y{) =
rVi(Yi) + (1 = r)Vi(Yi,). Thus (BL,Y}); satisfies the incentive compatibility constraints
(26) since (B}, Y{); and (B}, Y{); satisfy their corresponding incentive compatibility
constraints. Therefore it is a feasible solution candidate to problem (24) with investment
level k. To be noted that

> P(BL+Y;) <0,

which implies that it is possible to (incentive compatibly) distribute the extra resource
to agents'®. In consequence, T(V)(k) > rT(V)(K') + (1 — r)T(V)(k") and equality only
holds when r =0 or 1. [
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