
Adverse Selection and Self-fulfilling Business Cycles∗

Jess Benhabib† Feng Dong‡ Pengfei Wang§

This Version: May 2016

First Version: June 2014

Abstract

We introduce a simple adverse selection problem arising in credit markets into a s-
tandard textbook real business cycle model. There is a continuum of households and a
continuum of anonymous producers who use intermediate goods to produce the final goods.
These producers do not have the resources to make up-front payments to purchase inputs
and have to finance their working capital by borrowing from competitive financial inter-
mediates. Lending to these producers, however, is risky: honest borrowers will always pay
their debt back, but dishonest borrowers will always default. This gives rise to an adverse
selection problem for financial intermediaries. In a continuous-time real business cycle set-
ting we show that such adverse selection generates multiple steady states and both local
and global indeterminacy, and can give rise to boom and bust cycles driven by sunspots
under calibrated parameterization. Introducing reputational effects eliminates defaults and
results in a unique but still indeterminate steady state. Finally we generalize the model to
firms with heterogeneous and stochastic productivity, and show that indeterminacies and
sunspots persist.
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1 Introduction

The seminal work of Wilson (1980) shows that in a static model, adverse selection can generate

multiple equilibria because of asymmetric information about product quality. The aim of this

paper is to analyze how adverse selection in credit markets can give rise to lending externalities

that generate multiple steady states and a continuum of equilibria in an otherwise standard

dynamic general equilibrium model of business cycles.

To make this point, we introduce a simple type of adverse selection arising in credit mar-

kets into a standard textbook real business cycle model. The model features a continuum of

households and a continuum of anonymous producers. These producers use intermediate goods

to produce the final goods. They do not have the resources to make the up-front payments to

purchase intermediate inputs. Therefore, to finance their working capital, they must borrow

from competitive financial intermediaries. Lending to these producers however is risky, as some

borrowers may default. We assume that there are two types of borrowers (producers). In our

baseline model, the honest borrowers will always pay back their loans, while the dishonest

borrowers will always default. The financial intermediaries do not know which borrower is

honest and which is not. This gives rise to adverse selection: for any given interest rate, the

dishonest borrowers have a stronger incentive to borrow. In such an environment, an increase

in lending from some optimistic financial intermediaries encourages more honest producers to

borrow. The increased quality of borrowers reduces the default risk, which in turn stimulates

other financial intermediaries to lend. The resulting decline in the interest rate brings down the

production cost for all producers/borrowers. This stimulates an expansion in output, further

expands the credit supply from the households, and generates more future lending. In other

words, a lending externality exists both intratemporally and intertemporally.

In a dynamic setting market forces and competition can mitigate adverse selection through

reputational effects absent from our baseline model in Section 2. We therefore examine, in Sec-

tion 3, whether indeterminacy survives under reputational effects. We follow Kehoe and Levine

(1993) and assume that a borrower who defaults may, with some probability, lose reputation,

and is then excluded from the credit market forever.

In our baseline model in Section 2, we study the local dynamics of our model to show that

this lending externality not only generates two steady state equilibria with low and high average

default rates, but also gives rise to a continuum of equilibria around one of the steady states

under calibrated parameterizations. We then move on to characterize the global dynamics of
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our model economy. The additional insight from the global dynamics analysis is that even in

the absence of local indeterminacy we may still have global indeterminacy, with boom and bust

cycles in output under rational expectations. In the model with reputational considerations,

we show that the steady state equilibrium is unique, and no default occurs in equilibrium.

Nevertheless, perhaps surprisingly, indeterminacy in the form of a continuum of equilibria

persists.

Adverse selection in the credit market seems to be a realistic feature, both in poor and

rich countries.1 Our model has several implications that are supported by empirical evidence.

First, a large literature has documented that credit risk is countercyclical and has far-reaching

macroeconomic consequences. For instance, Gilchrist and Zakraǰsek (2012) find that a shock

to credit risk leads to significant declines in consumption, investment, and output. Pintus,

Wen and Xing (2015) show that interest rates faced by US firms move countercyclically and

lead the business cycle. These facts are consistent with our model’s predictions. Second, our

model delivers a countercyclical markup, an important empirical regularity well documented

in the literature. Because of information asymmetry, dishonest borrowers enjoy an information

rent. However, when the average quality of borrowers increases due to higher lending, this

information rent is diluted. So the measured markup declines, which is critical to sustaining

indeterminacy by bringing about higher real wages, a positive labor supply response, and a

higher output that dominates the income effect on leisure. Third, our extended model in

Section 4 can explain the well-known procyclical variation in productivity. The procyclicality

of average quality in the credit market implies that resources are reallocated towards producers

with lower credit risk when aggregate output increases. The improved resource allocation then

raises productivity endogenously. The procyclical endogenous TFP immediately implies that

increases in inputs will lead to a more than proportional increase in total aggregate output,

mimicking aggregate increasing returns. This effective increasing returns to scale arises only

at the aggregate level. It is also consistent with the results of Basu and Fernald (1997), who

find slightly decreasing returns to scale for typical two-digit industries in the US, but strong

increasing returns to scale at the aggregate level.

Related Literature Our paper is closely related to several branches of literature in macroe-

conomics. First, our paper builds on a large strand of literature on the possibility of indetermi-

nacy in RBC models. Benhabib and Farmer (1994) point out that increasing returns to scale

1See Sufi (2007) for evidence of syndicated loans in the US and Karlan and Zinman (2009) for evidence from
field experiments in South Africa.
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can generate indeterminacy in an RBC model. The degree of increasing returns to scale in pro-

duction required to generate indeterminacy, however, is considered be too large (See Basu and

Fernald (1995, 1997)). Subsequent work in the literature has introduced additional features to

the Benhabib-Farmer model that reduce the degree of increasing returns required for indeter-

minacy. In an important contribution, Wen (1998) adds variable capacity utilization and shows

that indeterminacy can arise with a magnitude of increasing returns similar to that in the data.

Gali (1994) and Jaimovich (2007) explore the possibility of indeterminacy via countercyclical

markups due to output composition and firm entry respectively. The literature has also shown

that models with indeterminacy can replicate many of the standard business cycle moments as

the standard RBC model (see Farmer and Guo (1994)). Furthermore, indeterminacy models

may outperform the standard RBC model in many other dimensions. For instance, Benhabib

and Wen (2004), Wang and Wen (2008), and Benhabib and Wang (2014) show that models

with indeterminacy can explain the hump-shaped output dynamics and the relative volatility of

labor and output, which are challenges for the standard RBC models. Our paper complements

this strand of literature by adding adverse selection as an additional source of macroeconomic

indeterminacy. The adverse selection approach also provides a micro-foundation for increasing

returns to scale at the aggregate level. Indeed, once we specify a Pareto distribution for firm

productivity, our model in Section 4 is isomorphic to those that have a representative-firm

economy with increasing returns. It therefore inherits the ability to reproduce the business

cycle features mentioned above without having to rely on increasing returns.2

Second, our paper is closely related to a burgeoning literature that study the macroeconomic

consequences of adverse selection. Kurlat (2013) builds a dynamic general equilibrium model

with adverse selection in the second-hand market for capital assets. Kurlat (2013) shows that

the degree of adverse selection varies countercyclically. Since adverse selection reduces the

efficiency of resource allocation, a negative shock that lowers aggregate output will exacerbate

adverse selection and worsen resource allocation efficiency. So the impact of the initial shocks

on aggregate output is propagated through time. Like Kurlat (2013), Bigio (2014) develops

an RBC model with adverse selection in the capital market. As firms must sell their existing

capital to finance investment and employment, adverse selection distorts both capital and labor

markets. Bigio (2014) shows that the adverse selection shock widens a dispersion of capital

quality, exacerbates the distortion, and creates a recession with a quantitative pattern similar to

2Liu and Wang (2014) provide an alternative mechanism to generate increasing returns via financial con-
straints.
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that observed during the Great Recession of 2008. Our model generates similar predictions to

Kurlat (2013) and Bigio (2014). First, adverse selection is also countercyclical in our model, so

the propagation of fundamental shocks via adverse selection, as highlighted by Kurlat (2013)

is also present in our model. Second, in our model, adverse selection in the credit markets

naturally creates the distortions to both capital and labor inputs. Introducing stochastic and

heterogeneous productivities into our extended model in Section 4 aggravates adverse selection,

and makes the economy more vulnerable to self-fulfilling expectation-driven fluctuations. While

Kurlat (2013) and Bigio (2014) emphasize the role of adverse selection in propagating business

cycles shocks, our paper complements their work by showing that adverse selection generates

multiple steady states and indeterminacy, and hence can be a source of large business cycle

fluctuations driven by self-fulfilling expectations.3 It is worth noting that, all of the above

papers focuses on local dynamics via log linearization. As underscored by Brunnermeier and

Sannikov (2014) and He and Krithnamurthy (2012), analyzing the local dynamics may miss

insights about economic fluctuations and crises that come from studying the global dynamics.

To this end, we use a continuous-time setup to characterize both the local and global dynamics

in the presence of information asymmetries. Indeed, global dynamics analysis in our model

shows that large economic crises can be triggered by confidence shocks occurring in the credit

market, arguably an important feature of the recent 2008 financial crisis.

Finally, our extended model in Section 3 with reputation effects is also related to that of

Chari, Shourideh and Zeltin-Jones (2014), who build a model of a secondary loan market with

adverse selection, and show how reputation effects can generate persistent adverse selection.

Multiple equilibria also arise in their model as in the classic signaling model by Spence (1973).

In contrast, multiple equilibria in our reputational model take form of indeterminacy, and are

generated by a different mechanism, that of endogenously countercyclical markups that mimics

aggregate increasing returns.

The rest of the paper is organized as follows. Section 2 describes the baseline model,

characterizes the conditions for local indeterminacy, and then proceeds to the analysis of global

dynamics. Section 3 incorporates reputation effects into the baseline model and shows that

indeterminacy may still arise, even without defaults in equilibrium. In Section 4 we introduce

a continuous distribution of heterogeneous and stochastic firm productivities, and show that

3Many other papers have also addressed adverse selection in a dynamic environment. Examples include
Williamson and Wright (1994), Eisfeldt (2004), House (2006), Guerrieri, Shimer, and Wright (2010), Chiu and
Koeppl (2012), Daley and Green (2012), Chang (2014), Camargo and Lester (2014), and Guerrieri and Shimer
(2014).
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adverse selection in that model can induce endogenous TFP, amplification, aggregate increasing

returns to scale and a continuum of equilibria. Section 5 concludes.

2 The Baseline Model

Time is continuous and proceeds from zero to infinity. There is an infinitely-lived representative

household and a continuum of final goods producers. The final goods producers purchase

intermediate goods as input to produce the final good, which is then sold to households for

consumption and investment. The intermediate goods are produced by capital and labor in a

competitive market. We assume no distortion in the production of intermediate goods. Final

goods firms do not have resources to make up-front payments to purchase intermediate goods

before production takes place and revenues from sales are realized. They must therefore borrow

from competitive financial intermediaries (lenders) to finance their working capital. Lending

to these final goods producers is risky, as they may default. We assume that there are two

types of producers (borrowers): honest borrowers who have the ability to produce and will

always pay back the loan after the production, and dishonest borrowers who will fully default

on their loan. The lenders do not have information about the borrower types. They make

loans to firms by with the adverse selection problem in mind. We begin by assuming that all

trade is anonymous so we exclude the possibility of reputation effects. We relax these strong

assumptions in Section 3, where we introduce reputation effects.

2.1 Setup

Households The representative household has a lifetime utility function∫ ∞
0

e−ρt

(
log (Ct)− ψ

N1+γ
t

1 + γ

)
dt (1)

where ρ > 0 is the subjective discount factor, Ct is the consumption, Nt is the hours worked,

ψ > 0 is the utility weight for labor, and γ ≥ 0 is the inverse Frisch elasticity of labor supply.

The household faces the following budget constraint

Ct + It ≤ RtutKt +WtNt + Πt, (2)

where Rt, Wt and Πt denote respectively the rental price, wage and total profits from all the

firms and financial intermediaries. As in Wen (1998) we introduce an endogenous capacity
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utilization rate ut. As is standard in the literature, the depreciation rate of capital increases

with the capacity utilization rate according to

δ(ut) = δ0 u
1+θ
t

1 + θ
, (3)

where δ0 > 0 is a constant and θ > 0.4 Finally, the law of motion for capital is governed by

K̇t = −δ(ut)Kt + It. (4)

The households choose a path of consumption Xt, Ct, Nt, ut, and Kt to maximize their

utility function (1), taking Rt, Wt and Πt as given. The first-order conditions are

1

Ct
Wt = ψNγ

t , (5)

Ċt
Ct

= utRt − δ (ut)− ρ, (6)

and

Rt = δ0uθt . (7)

The left-hand side of equation (5) is the marginal utility of consumption obtained from an

additional unit of work, and the right-hand side is the marginal disutility of a unit of work.

equation (6) is the usual Euler equation. Finally, a one-percent increase in the utilization

rate raises the total rent by RtKt but also increases total depreciation by δ0u
θ
tKt, so equation

(7) states that the marginal benefit is equal to the marginal cost of utilization. Finally the

transversality condition is given by limt→∞ e
−ρt 1

Ct
Kt = 0.

Final goods producers There is a unit measure of final goods producers indexed by

i ∈ [0, 1]. A fraction π of them are dishonest and a fraction 1− π are honest. Each one of the

honest producers is endowed with an indivisible project as in Stiglitz and Weiss (1981), which

transforms Φ units of intermediate goods to Φ units of final goods. Let Pt be the price of the

intermediate goods input. Each project then requires ΦPt of working capital. The dishonest

producers, however, can claim to be honest and borrow PtΦ and then default and keep (for

simplicity all) the borrowed funds. They enjoy profits of PtΦ by doing so. Anticipating this

adverse selection problem, the final intermediates will therefore charge all borrowers a gross

4Dong, Wang, and Wen (2015) develop a search-based theory to offer a micro-foundation for the convex
depreciation function.
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interest rate Rft > 1. Hence the profit from borrowing and producing for a honest producer is

given by

Πh
t = (1−RftPt) Φ. (8)

Denote by st the measure of honest producers who invest in their projects:

st =


1− π if Rft <

1
Pt

∈ [0, 1− π) if Rft = 1
Pt

0 if Rft >
1
Pt

. (9)

The total demand for intermediate goods is hence given by

Xt = stΦ. (10)

Since each firm also produces Φ units of the final goods, the total quantity of the final goods

produced is:

Yt = stΦ = Xt (11)

Intermediate goods The intermediate goods is produced by capital and labor with the

technology

Xt = AK̃α
t N

1−α
t , (12)

where K̃t = utKt is total capital supply from the households. In a competitive market the

profit of producers is Πx
t = PtAK̃

α
t N

1−α
t −WtNt −RtK̃t. The first-order conditions are

Rt = Ptα
Xt

K̃t

= Ptα
Xt

utKt
, (13)

Wt = Pt (1− α)
Xt

Nt
. (14)

Under competition profits are zero, so Πx
t = 0, and WtNt +RtutKt = PtXt.

Financial Intermediaries The financial intermediaries are also operated under competi-

tion. Anticipating a fraction Θt of the loan will be paid back, the interest rate is then given

by

Rft =
1

Θt
. (15)

So the financial intermediaries earn zero profit. The honest producers altogether borrow XtPt

of working capital and the dishonest producers altogether borrow πΦPt as working capital.

Since only the honest producers pay back their loan, the average payback rate is

Θt =
XtPt

πΦPt +XtPt
=

Xt

πΦ +Xt
. (16)
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2.2 Equilibrium

We focus on an interior solution so Rft = 1
Pt

.5 In equilibrium, the total profit is simply πPtΦ.

Hence the total budget constraint becomes

Ct + It = PtXt + πPtΦ. (17)

Since Pt = 1
Rft

= Θt = Xt
πΦ+Xt

, the above equation can be further reduced to

Ct + It = PtXt + πPtΦ = Xt = Yt. (18)

We then obtain the resource constraint,

Ct + K̇t = Yt − δ(ut)Kt. (19)

The inverse of markup, using equation (18), is therefore is given by:

φt ≡ 1− Πt

Yt
= 1− πPtΦ

Xt
= Θt = Pt,

as φt = Θt, it then also represents the average quality of the borrowers in the credit market.

Finally, the rental price of capital is given by

Rt = φt ·
αYt
utKt

. (20)

Likewise, the wage rate is given by

Wt = φt ·
(1− α)Yt

Nt
. (21)

Equations (5), (6) and (7) then become

ψNγ
t =

(
1

Ct

)
(1− α)φt

Yt
Nt
, (22)

Ċt
Ct

= αφt
Yt
Kt
− δ(ut)− ρ, (23)

αφt
Yt
utKt

= δ0uθt = (1 + θ)
δ (ut)

ut
. (24)

Then we have

ut =

(
αφtYt
δ0Kt

) 1
1+θ

, (25)

5We assume, without loss of generality, that Φ is big enough, so Φ > AKα
t N

1−α
t . We can also assume that

there is free entry and an infinite measure of potential honest producers as potential entrants. The free entry
condition then implies Rft = 1

Pt
.
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and thus
Ċt
Ct

=

(
θ

1 + θ

)
αφt

Yt
Kt
− ρ. (26)

Equation (16) then becomes

φt =
Yt

πΦ + Yt
(27)

Finally the aggregate production function becomes

Yt = A (utKt)
αN1−α

t . (28)

In short, the equilibrium can be characterized by equations (22), (23), (24), (28), (19) and (27).

These six equations fully determine the dynamics of the six variables Ct,Kt, Yt, ut, Nt and φt.

Equation (27) implies that φt increases with aggregate output. Note that 1
φt

= Yt
RtutKt+WtNt

is the aggregate markup. Therefore the endogenous markup in our model is countercyclical,

which is consistent with the empirical regularity well documented in the literature.6 The credit

spread is given by Rft − 1 = πΦ/Yt, moving in a countercyclical fashion as in the data.

The countercyclical markup has important implications. For example, it can make hours

and the real wage move in the same direction. To see this, suppose Nt increases, so that output

increases. Then according to equation (27), the marginal cost φt increases as well, which in

turn raises the real wage in equation (21). If the markup is a constant, then the real wage

would be proportional to the marginal product of labor and would fall when hours increase.

Note also that when π = 0, i.e., there is no adverse selection in the credit markets, equation

(27) implies that φt = 1, and our model simply collapses into a standard real business cycle

model. The markup is 1/φt > 1 if and only if dishonest firms obtain rent due to information

asymmetry.

2.3 Steady State

We first study the steady state of the model. We use Z to denote the steady state of variable

Zt. To solve the steady state, we first express all other variables in terms of φ and then we

solve φ as a fixed-point problem. Combining equations (23) and (24) yields

δ0uθ+1 − δ0uθ+1

1 + θ
= ρ,

or u =
(

1
δ0
ρ
θ (1 + θ)

) 1
1+θ . Note that u only depends on δ0, ρ and θ. Therefore, without loss

of generality, we can set δ0 = ρ
θ (1 + θ) so that u = 1 at the steady state. The steady state

6See, e.g., Bils (1987) and Rotemberg and Woodford (1999).
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depreciation rate then is δ(u) = ρ/θ. Given φ, we have

ky =
K

Y
=

αφ

ρ+ ρ/θ
=

αφθ

ρ(1 + θ)
, (29)

cy = 1− δky = 1− αφ

1 + θ
, (30)

N =

(
(1− α)φ

1− αφ
1+θ

1

ψ

) 1
1+γ

, (31)

Y = A
1

1−α

(
αφθ

ρ(1 + θ)

) α
1−α

(
(1− α)φ

1− αφ
1+θ

1

ψ

) 1
1+γ

≡ Y (φ). (32)

Then we can use equation (27) to pin down φ from

Φ̄ ≡ πΦ =

(
1− φ
φ

)
· Y (φ) ≡ Ψ(φ), (33)

where the left-hand side is the total debt obligation of the dishonest borrowers, and the right

hand-side is the maximum amount of bad loans that the credit market can tolerate under

adverse selection, given that the average credit quality is φ. The total loss from these dishonest

borrowers equals πΦ = πΦPRf is exactly compensated from interest gain from the honest

borrowers,
(

1−φ
φ

)
· Y (φ) = (Rf − 1)Y (φ), if equation (33) holds. When α

1−α + 1
1+γ > 1, Ψ(φ)

is a non-monotonic function of φ since Ψ(0) = 0 and Ψ(1) = 0. On the one hand, if the

average credit quality is 0, the total supply of credit will be zero, and hence no lending will

possible. On the other hand, if the average quality is one, i.e., φ = 1, then by definition no

bad loan will be made. So given Φ̄, there may exist two steady state values of φ. Denote

Ψmax = max0≤φ≤1 Ψ(φ), and φ∗ = arg max0≤φ≤1 Ψ(φ). Then we have the following lemma

regarding the possibility of multiple steady state equilibria.

Lemma 1 When 0 < Φ̄ < Ψmax, there exists two steady states φ that solve Φ̄ = Ψ(φ).

It is well known that adverse selection can generate multiple equilibria in a static model (see,

e.g., Wilson (1980)). So it is not surprising that our model has multiple steady state equilibria.

A credit expansion by financial intermediaries invites more honest firms to borrow and produce.

The increased quality of borrowers reduces the default risk, which then stimulates more lending

from other financial intermediaries. In turn, the interest rate charged by financial intermediaries

decreases, bringing down the production cost. This triggers an output expansion, and further

encourages credit supply from the households, and thus generates more future lending. In a

nutshell, lending externality exists both intratemporally and intertemporally. We will show
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that this type of lending externality generates a new type of multiplicity, which shares some

similarities with the indeterminacy literature following Benhabib and Farmer (1994).

2.4 Local Dynamics

A number of studies have explored the role of endogenous markup in generating local inde-

terminacy and endogenous fluctuations (see e.g., Jaimovich (2006) and Benhabib and Wang

(2013)). Following the standard practice, we study the local dynamics around the steady state.

Note that at the steady state φ and Φ̄ are linked by Φ̄ = Ψ(φ), so we can parameterize the

steady state either by Φ̄ or φ. We will use φ as it is more convenient for the study of local

dynamics. Denote by x̂t = logXt − logX the percent deviation from its steady state. First,

we log-linearize equation (27) to obtain

φ̂t = (1− φ)ŷt ≡ τ ŷt, (34)

which states that the percent deviation of the marginal cost is proportional to output. Log-

linearizing equations (28) and (24) yields

ŷt =
αθk̂t + (1 + θ)(1− α)n̂t

1 + θ − (1 + τ)α
≡ ak̂t + bn̂t, (35)

where a ≡ αθ
1+θ−(1+τ)α and b ≡ (1+θ)(1−α)

1+θ−(1+τ)α . We assume that 1+θ−(1+τ)α > 0, or equivalently

τ < 1+θ
α − 1, to make a > 0 and b > 0. In general these restrictions are easily satisfied (see

section 2.5). We can also substitute out n̂t after log-linearizing equation (22) to express ŷt as

ŷt =
a(1 + γ)

1 + γ − b(1 + τ)
k̂t −

b

1 + γ − b(1 + τ)
ĉt ≡ λ1k̂t + λ2ĉt. (36)

It is worth mentioning that a+b = 1+θ−α
1+θ−(1+τ)α = 1 if τ = 0. Recall that τ = 0 corresponds to

the case without adverse selection. Thus endogenous capacity utilization alone does not gener-

ate an increasing returns to scale effect at the aggregate level. However, a+b = 1+θ−α
1+θ−(1+τ)α > 1

if τ > 0. That is, through general equilibrium effects, adverse selection combined with en-

dogenous capacity utilization mimics increasing returns to scale, even though production has

constant returns to scale. Furthermore, if τ > θ , then b > 1. The model can then explain

the procyclical movements in labor productivity ŷt − n̂t without resorting to exogenous TFP

shocks.

The effective increasing returns in production can generate locally indeterminate steady

states as in Benhabib and Farmer (1994). If increasing capital can increase the marginal product
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of capital, given a fixed discount rate, the relative price of capital must fall and the relative

price of consumption must rise so that the total return including capital gains or losses equals

the discount rate. The increase in the relative price of consumption boosts consumption at the

expense of investment, so capital drifts back towards the steady state instead of progressively

exploding. The steady state then becomes a sink rather than a saddle, and therefore becomes

indeterminate. The mechanism responsible for the increase in the marginal product of capital

however is the increase in the supply of labor in response to higher wages that offset diminishing

returns to capital in production. In standard contexts this is not possible if leisure is a normal

good. In our adverse selection context however the countercyclical markups, associated with

lower non-repayment rates and higher intermediate goods prices that increase with output

levels, allow wages to rise sufficiently. The resulting higher labor supply can then mimic

increasing returns, as the marginal product of capital rises with capital.7

This mechanism can be seen directly from equation (35): a one-percent increase in capital

directly increases output and the marginal product of labor by a percent and, from equation

(34), reduces the markup by aτ percent. Thanks to its higher marginal productivity, the labor

supply also increases. A one-percent increase in labor supply then increases output by b percent.

The exact increase in labor supply depends on the Frisch elasticity γ. This explains why the

equilibrium output elasticity with respect to capital, λ1, depends on parameters a and b and

through them on γ and τ . On the household side, since both leisure and consumption are

normal goods, an increase in consumption has a wealth effect on labor supply. The effect of a

change in labor supply on output induced by a change in consumption, as seen from equation

(36) obtained after substituting for labor in equation (35), works through the marginal cost

channel, and also depends on τ . Again since both a and b increase with τ , output elasticities

with respect to capital and consumption are increasing functions of τ . In other words, the

presence of adverse selection makes equilibrium output more sensitive to changes in capital and

to changes in autonomous consumption, and creates an amplification mechanism for business

fluctuations.

Formally, using equation (36) and the log-linearized equations (19) and (23), we can then

characterize the local dynamics as follows:[
k̇t
ċt

]
= J ·

[
k̂t
ĉt

]
, (37)

7The same mechanism for local indeterminacy can also operate in models of collateral constraints that also
give countercyclical markups as in Benhabib and Wang (2013).
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where

J ≡ δ

[ (
1+θ
αφ

)
λ1 − (1 + τ)λ1

(
1+θ
αφ

)
(λ2 − 1) + 1− (1 + τ)λ2

θ [(1 + τ)λ1 − 1] θ(1 + τ)λ2

]
, (38)

and λ1 ≡ a(1+γ)
1+γ−b(1+τ) , λ2 ≡ − b

1+γ−b(1+τ) , and δ = ρ/θ is the steady state depreciation rate. The

local dynamics around the steady state is determined by the roots of J. The model economy

exhibits local indeterminacy if both roots of J are negative. Note that the sum of the roots

equals the trace of J , and the product of the roots equals the determinant of J . Thus the sign

of the roots of J can be observed from the sign of its trace and determinant. The following

lemma specifies the sign for the trace and determinant condition for local indeterminacy.

Lemma 2 Denote τmin ≡ (1+θ)(1+γ)
(1+θ)(1−α)+α(1+γ) − 1 and τmax ≡ 1 − φ∗, then Trace(J) < 0 if and

only if τ > τmin, and Det(J) > 0 if and only if τmin < τ < τmax.

According to Lemma 2, our baseline model will be indeterminate if and only if τmin < τ <

τmax. In this case, Trace(J) < 0 and Det(J) > 0 jointly imply that both roots of J are negative.

We summarize this result in the following proposition.

Proposition 1 The model exhibits local indeterminacy around a particular steady state if and

only if

τmin < τ < τmax. (39)

Equivalently, indeterminacy emerges if and only if φ ∈ (φmin, φmax), where φmin ≡ 1− τmax =

φ∗, and φmax ≡ 1− τmin.

To understand the intuition behind Proposition 1, first note that if τ > τmin, we have

1 + γ − b(1 + τ) < 1 + γ − (1 + θ)(1− α)

1 + θ − (1 + τmin)α
(1 + τmin) = 0. (40)

Then the equilibrium elasticity of output with respect to consumption λ2 becomes positive,

namely, an autonomous change in consumption will lead to an increase in output. Since capital

is predetermined, labor must increase by equation (35). To induce an increase in labor, the real

wage must increase enough to overcome the income effect, which is only possible if the increase

in markup is large enough. In other words, τ in equation (34) must be large enough.

We have used the mapping between τ and steady state output to characterize the indeter-

minacy condition in terms of the model’s deep parameter values. Notice that τmax = 1 − φ∗,
where φ∗ ≡ arg max0≤φ≤1 Ψ(φ). Since 1− φ̄L > 1− φ∗ = τmax, the local dynamics around the
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steady state associated with φ = φ̄L are determinate according to Proposition 1. Indeterminacy

is only possible in the neighborhood of the steady state associated with φ = φ̄H . The following

corollary formally characterizes the indeterminacy condition in terms of Φ̄.

Corollary 1 Denote Φ̄ = πΦ.

1. If Φ̄ ∈ (0,Ψ(φmax)), then both steady states are saddles.

2. If Φ̄ ∈ (Ψ(φmax),Ψmax), then the local dynamics around the steady state φ = φ̄H exhibits

indeterminacy while the local dynamics around the steady state φ = φ̄L is a saddle.

As suggested by Lemma 1, we focus on the nontrivial region in which Φ̄ < Ψmax. When

Ψ(φmax) < Φ̄ < Ψmax, we have φmin = φ∗ < φ̄H < φmax, and φ̄L < φmin. As a result, according

to Proposition 1, the steady state φ̄H exhibits indeterminacy. For the steady state φ = φ̄L, by

Lemma 2, we can conclude that the determinant of J is negative. So the two roots of J must

have opposite signs and this implies a saddle. But if 0 < Φ̄ < Ψ(φmax), we have φ̄H > φmax

and φ̄L < φmin. In this case, the determinants of J at both steady states are negative. So both

steady states are saddles.

We summarize these different scenarios in Figure 1. The inverted U curve illustrates the

relationship between φ and Φ̄ specified in equation (33). In Figure 1, φ is on the horizontal axis

and Φ̄ is on the vertical axis. For a given Φ̄, the two steady states φ̄L and φ̄H can be located

from the intersection of the inverted U curve and a horizontal line through point (0, Φ̄). The

two vertical lines passing points (φmin, 0) and (φmax, 0) divide the diagram into three regions.

In the left and right regions, the determinant of the Jacobian matrix J is negative, implying

that one of the roots is positive and the other is negative. So if a steady state φ falls into

either of these two regions, it is a saddle. In the middle region, Det(J) > 0 and Trace(J) < 0,

and thus both roots are negative. So if the steady state φ falls into the middle region it is a

sink which supports multiple self-fulfilling expectation-driven equilibria, or indeterminacy in

its neighborhood.

Since Φ̄ = πΦ, we can reinterpret the above corollary in terms of π, the proportion of

dishonest firms. For simplicity, assume Φ is large enough such that Φ > Ψmax. Denote πL ≡
Ψ(φmax)/Φ and πH ≡ Ψ(φmin)/Φ = Ψmax/Φ, and thus 0 < πL < πH < 1. Then we know that

(i) if π ∈ (0, πL], both steady states are saddles, (ii) if π ∈ (πL, πH), the steady state with

φ = φ̄L is a saddle while the steady state with φ = φ̄H is a sink, and (iii) if π ∈ [πH , 1], then

there exist no non-degenerate steady state equilibria. As indicated in Lemma 1, the third case
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Figure 1: Multiple Steady States and the Indeterminacy Region

is the least interesting, and thus we focus on the scenarios in which π < πH . Then the model

is indeterminate if the adverse selection problem is severe enough, i.e., π > πL. We summarize

the above argument in the following corollary.

Corollary 2 The likelihood of indeterminacy increases with π, the proportion of dishonest

firms.

Arguably, adverse selection is more severe in developing countries. Our study then also

suggests that developing countries are more likely to be subject to self-fulfilling expectation-

driven fluctuations and hence exhibit higher economic volatility, which is in line with the

empirical regularity emphasized by Ramey and Ramey (1995) and Easterly, Islam, and Stiglitz

(2000).

2.5 Empirical Possibility of Indeterminacy

We have proved that our model with adverse selection can generate self-fulfilling equilibria in

theory. We now examine the empirical plausibility of self-fulfilling equilibria under calibrated

parameter values. The frequency is a quarter. We set ρ = 0.01, implying an annual risk-free
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interest rate of 4%. We set θ = 0.3 so the depreciation rate at steady state is 0.033 and the

annualized investment-to-capital ratio is 12% (see Cooper and Haltiwanger (2006)). We set

α = 0.33 as in the standard RBC model. We assume that labor supply is elastic, and thus set

γ = 0. We normalize the aggregate productivity A = 1. We set ψ = 1.75 so that N = 1
3 in the

”good” steady state. We set Φ = πΦ = 0.13 so that φ = φ̄H = 0.9, which is consistent with

average profit rate in the data. The associated φ̄L = 0.011. If we further set π = 0.1, i.e., the

proportion of dishonest borrowers is around 10%, then Φ = 1.3.8 Consequently, based on our

calibration and the indeterminacy condition (39), we conclude that our baseline model does

generate self-fulfilling equilibria.

Parameter Value Description

ρ 0.01 Discount factor

θ 0.3 Utilization elasticity of depreciation

δ 0.033 Depreciation rate

α 0.33 Capital income share

γ 0 Inverse Frisch elasticity of labor supply

ψ 1.75 Coefficient of labor disutility

π 0.1 Proportion of firms that produce lemons

Φ 1.3 Maximum firm capacity

Table 1: Calibration

Our calibration uses a delinquency rate of approximately 10%, which of in the same magni-

tude as in the Great Recession. but is higher than the average delinquency rate in the data (the

average is 3.73% from period 1985 to 2013). Delinquency rates do vary over time, however. For

example commercial residential mortgages had high delinquency rates during 2009-2013, which

spread panic to financial markets through mortgage-backed securities and other derivatives. N-

evertheless we will show in Section 3, where we introduce reputation effects, that indeterminacy

will arise even if there is no default in equilibrium.

2.6 Global Dynamics

So far we have characterized the steady states and the local dynamics around these steady

states. We showed that for some parameters, the equilibrium around one of the steady states

is locally determinate. In this section, we analyze the global dynamics and then show that

8As shown in equation (33), only the product πΦ matters for φ.
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Figure 2: Illustration of φt

global indeterminacy always exists in our model, even in the case where both steady states are

saddles and locally determinate.9

It is worth noting that it is impossible for us to obtain a two-dimensional autonomous

dynamical system that is only related to (Ct,Kt). This is because we do not analytically

formulate φt in terms of (Ct,Kt). One possible solution is to characterize a three-dimensional

dynamical system on (Ct,Kt, φt). The main concern, however, is it will be difficult, if not

impossible, for us to completely characterize the economic properties of the high-dimensional

dynamical system. Fortunately, we can still reduce the dynamical system to a two-dimensional

one, but in terms of (φt,Kt), as shown in the following proposition.

Proposition 2 The autonomous dynamical system on (φt,Kt) is given by

(
1 − α+

α (1 + γ)

1 + θ

)(
φmax − φt

1 − φt

) ·
φt
φt

+

(
αθ (1 + γ)

1 + θ

) ·
Kt

Kt
= (1 − α)

(
αθ

1 + θ
φt
Y (φt)

Kt
− ρ

)
(41)

K̇t =

(
1 − αφt

1 + θ

)
Y (φt) − C (φt,Kt) (42)

9For an early growth model with countercyclical markups, multiple steady states and global indeterminacies
see Gali (1996).
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with Yt = Y (φt) = πΦφt
1−φt , φmax ≡ 1− τmin, τmin defined in Lemma 2, and

Ct = C (φt,Kt) = f0 · g (φt) · h(Kt) (43)

where f0 = A
1+γ
1−α

(
α
δ0

) α(1+γ)
(1+θ)(1−α)

(
1−α
ψ

)
, h(Kt) = K

αθ(1+γ)
(1+θ)(1−α)
t , and

g (φt) =

[
φ

1−α+
α(1+γ)
1+θ

t Y (φt)
1−α−(1− α

1+θ )(1+γ)

] 1
1−α

. (44)

As shown in equation (43), we can formulate Ct as a function function of φt and Kt. In

turn, We have the following corollary regarding the relationship between equilibrium φt and

Ct.

Corollary 3 For any Kt > 0 and Ct < f0 · h(Kt) · g (φmax), there exist two possible φt

values, denoted by φt = φ+
(

Ct
f0h(Kt)

)
> φmax and φt = φ−

(
Ct

f0h(Kt)

)
< φmax, that yield the

same level of consumption defined by (43).

We illustrate these two possible equilibria φt in Figure 2. The function g(φt) has an inverted

U shape. It attains the maximum at φmax. Notice that g(0) < Ct/[f0 · h(Kt)] < g(φmax), and

then by the intermediate value theorem, there exist an φ−t such that 0 < φ−t < φmax and

g(φ−t ) = Ct/[f0 · h(Kt)]. Since g′(φ) > 0 for 0 < φ < φmax , φ−t must be unique. Similarly,

g(1) < Ct/[f0 · h(Kt)] < g(φmax) and g′(φ) < 0 for φmax < φ < 1, so there exists a unique φ+
t

such that φmax < φ+
t < 1 and g(φ+

t ) = Ct/[f0 · h(Kt)].

As discussed by Lemma 1, the dynamical system on (φt,Kt) have two steady states. Moti-

vated by Corollary 1, we consider two cases. In the first case, one of the steady states is a sink

and the other is a saddle. In the second case, both steady states are saddles.

2.6.1 Global Dynamics with Local Indeterminacy

We first consider the case in which one steady state is a sink. As illustrated in Figure 1, π (the

proportion of dishonest firms) is high and both steady state φ values are smaller than φmax

in this case. As noted before, there is local indeterminacy around the upper steady state but

local determinacy around the lower steady state. However, globally the local steady state is

also indeterminate as Figure 3 shows.

In Figure 3, the thick red line is the K̇t = 0 locus and the thick blue line is the
·
φt = 0 locus.

The small circles indicate the initial conditions of trajectories. These two loci intersect twice

at upper and lower steady states, respectively. For a given Kt, there is a unique level of φt such

18



0





Transition Dynamics

 

 

̇ = 0

̇ = 0

saddle

Figure 3: Global Dynamics with One Saddle: A High π (We set π = 0.2923. All the
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that the economy converges to the lower steady state. The function giving the unique level

of φt as Kt and converging to the lower steady state is the saddle path in Figure 3, a dashed

blue line. If the initial φt is below this saddle path, the economy will eventually converge to

the horizontal axis with φt = 0 and some positive capital.10 By equation (43), this implies

zero consumption and the transversality condition for households will be violated, so paths

starting below this saddle path are ruled out. However, for a given Kt in the neighborhood

of the lower steady state, a path starting above the saddle path cannot be ruled out. Figure

3 shows that a trajectory that starting above the saddle path takes the economy initially

down and to the left, but then then turns right and up. The economy then circles around

the upper steady state and eventually converges to it. As both the differential equations and

the households’ transversality conditions are satisfied, such a path is indeed an equilibrium

path. As Figure 3 indicates, almost every initial φt that is above the saddle path associated

with the lower steady state will eventually converge to the upper steady state. It is clear

that during the convergence, the economy exhibits oscillations in Kt and φt. Since output is

Yt = πΦφt/(1 − φt), it also exhibits boom and bust cycles. Such transition dynamics toward

the upper steady state therefore implies a rich propagation mechanism for exogenous shocks.

For example, if a transitory exogenous shock moves the economy away from the upper steady

state, then the economy will display persistent oscillation in output before it returns to the

upper steady state.11

Figure 3 shows that for a given initial capital stock K0, there are many (infinite) deter-

ministic equilibria defined by the initial value of φ0 that converges to the upper steady state

smoothly. However, there are at least two other types of equilibria with jumps in φt and hence

discontinuity in output. We delay discussing such equilibria in the case where both steady

states are saddles to the next section. The stark contrast between the local dynamics and the

global dynamics is better illustrated in that context.12

10When φt = 0, both the capital utilization rate and the depreciation rate is zero.
11The global dynamics depicted in the case of a local saddle and a sink may be analyzed via the two-parameter

Bogdanov-Takens (BT) bifurcation, which occurs at parameter values for the tangency point Ψ(φmax) = πΦ, or
the BT point. By varying the parameters away from the BT point it is possible to analytically characterize the
dynamics for various parameter regions yielding either zero and two steady states, and the qualitative dynamics
and phase diagram in the region encompassing both steady states, including the saddle connection between the
steady states, as depicted in Figure 3. See in particular Kuznetsov, 1998, p. 322. However not all parameter
combinations may be economically admissible, so for Figure 3 we pick parameters in the economically admissible
range. The qualitative dynamics, steady states and the saddle connection will remain as we perturb parameters.

12A large literature on local indeterminacy has already constructed stochastic equilibria by randomizing over
the deterministic equilibria (with random jumps). So it may come as no surprise for some readers that there
exist equilibria with jumps in φt when one of the steady states is locally indeterminate.
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2.6.2 Global Dynamics with Two Saddles

In this section we study the global dynamics in the case where both π is low such that steady

states are saddles, where φ̄H > φmax and φ̄L < φmax. We set π = 0.0615 for the following

numerical analysis, including in Figures 5 and 6. All the other parameter values are from Table

1.13 Figure 4 graphs the two saddle paths associated with these two steady states. This then

implies that both steady states are globally indeterminate: for any given Kt, the economy can

be on either saddle path. So globally there is still indeterminacy even around each of the steady

states. Furthermore, we can create very complicated equilibrium paths if we allow φt to jump.

We can construct two types of jumps to illustrate the point. The first type of jump in φt are

deterministic and fully anticipated. Utility maximization then requires consumption to change

continuously. That is consumption does not jump when φt jumps. Notice that φt = φ+
t and

φt = φ−t yield the same consumption level for a given capital Kt. The economy can always jump

from φt = φ+
t > φmax to φt = φ−t < φmax and back without changing the value of consumption,

on a deterministic cycle.

Figure 5 graphs one such possible equilibrium path for each of consumption, investmen-

t, output and interest spread once we allow φt to jump. The economy starts from point

K = 6.2783 and φ = 0.9717 > φmax and so C = 0.8723. With K = 6.2783, there exists

another φ = 0.8249 < φmax that yields C = 0.8723. The economy then follows the trajecto-

ry according to equations (41) and (42). It takes around 4.41 years for the model economy

to reach K = 11.1719, φ = 0.9270 and C = 0.9307. We then let φ jump down to a level

that allows consumption to remain at 0.9307 upon the jump. By construction, this leads to

φ = 0.8241 < φmax after the jump. We then let the economy follow the trajectory dictated by

equations (41) and (42) again by another 8.02 years to reach K = 6.2783, φ = 0.8249 and hence

C = 0.8723. Notice that the consumption level has returned to its initial level. We then let

φ jump from φ = 0.8249 to φ = 0.9717. Again by construction, consumption does not change

immediately. We repeat this process and obtain the deterministic cycles in consumption, in-

vestment, output and credit spread in Figure 5. The adverse selection problem is modest when

φt > φmax, but it becomes much worse when φt < φmax. So when φt jumps down, there is

a collapse in output. Households can insure their consumption by disinvesting capital after

φt jumps down. In general, there are infinite ways to construct these deterministic cycles, as

13To better illustrate the global dynamics with two saddles in Figure 4, we set α from 0.33 to 0.62, and Φ from
1.3 to 22. All the other parameter values are from Table 1. The numerical analysis in this section, however, uses
standard parameterization in Table 1, only changing the value of π from 0.1 to 0.0615.
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Figure 5: Deterministic Cycles

pointed out by Christiano and Harrison (1999).14 Around the upper steady state, equilibrium

φt can take many (possibly infinite values). So the equilibrium around the upper steady-state

is still indeterminate, although it is a saddle.

Sunspot Equilibria Finally we can also construct a stochastic sunspot equilibrium by

allowing φt to jump randomly. More specifically, we introduce sunspot variables zt, which take

two values, 1 and 0. We assume that in a short time interval dt, there is probability λdt that

the sunspot variable will change from 1 to 0 and probability ωdt that will change from 0 to 1.

We construct the equilibrium φt as a function of Kt and sunspot zt, i.e., φt = φ(Kt, zt), such

that φ(Kt, 1) > φ(Kt, 0). So the equilibrium φt will jump with an anticipated probability when

zt changes its value. When zt = 1, economic confidence is high so adverse selection is modest.

But when zt = 0, economic confidence is low, and adverse selection becomes severe. We use

the change of zt from 1 to 0 to trigger an economic crisis, and from 0 to 1 to stop the crisis as

14These two φt that yield the same level of consumption correspond to two different branches in the differential
equations defined by Ct and Kt. As pointed out by Christiano and Harrison (1999) a model with two branches can
display rich global dynamics, regardless of the local determinacy. For example, we can construct an equilibrium
with regime switches along these branches. The jumps for φt in the differential equations defined by φt and Kt

correspond to the switch of branches in the dynamics defined for Ct and Kt.
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economic confidence is restored. We set λ = 0.01 and ω = 0.025 as an example, which means

that the economy will remain in the normal, non-crisis mode with probability 0.7143. Since

jumps in φt are now stochastic, consumption is exposed to a jump risk. Therefore equation

(41) must be modified to take this risk into account. Denote φ1t = φ(Kt, 1) and φ0t = φ(Kt, 0).

We then have (
1− α+

α (1 + γ)

1 + θ

)(
φmax − φ1t

1− φ1t

) ·
φ1t

φ1t
+

(
αθ (1 + γ)

1 + θ

) ·
Kt

Kt

= (1− α)

[
αθ

1 + θ
φ1t

Y1t

Kt
− ρ+ λ

(
g(φ1t)

g(φ0t)
− 1

)]
,

for normal non-crisis times. Here the last term g(φ1t)
g(φ0t)

− 1 reflects the percentage change in

consumption due to the jump from φ1t to φ0t and Y1t = πΦφ1t/ (1− φ1t) is aggregate output

when φt = φ1t. Similarly we have(
1− α+

α (1 + γ)

1 + θ

)(
φmax − φ0t

1− φ0t

) ·
φ0t

φ0t
+

(
αθ (1 + γ)

1 + θ

) ·
Kt

Kt

= (1− α)

[
αθ

1 + θ
φ0t

Y0t

Kt
− ρ+ ω

(
g(φ0t)

g(φ1t)
− 1

)]
,

in crisis times when zt = 0.

It is evident that if λ = ω = 0, then φ1t = φ(Kt, 1) and φ0t = φ(Kt, 0) are functions defining

the saddle paths toward the upper and lower steady states, respectively. By continuity, these

two functions exist for small λ and ω. We solve these two functions using the collocation

method discussed in Miranda and Fackler (2002). More specifically we employ a 15-degree

Chebychev polynomial of K to approximate these two functions. Once we obtain φ1t = φ(Kt, 1)

and φ0t = φ(Kt, 0) as functions of capital Kt, we can then use equation (41) to simulate the

dynamic path of capital. Figure 6 shows a possible dynamic path for this the economy.

We assume that the economy is initially in the normal non-crisis mode with zt = 1 for a

sufficiently long period. So capital, consumption, output, and investment do not change. The

parameter values we choose yield K = 10.5427. Due to precautionary savings, this level of

capital is higher than the deterministic upper steady state level of capital, as households have

an incentive to save to insure against the stochastic crash in output. The economy stays at

this level of capital for 2.5 years, and then a crisis emerges, triggered by a drop in zt from 1

to 0. The spread (the bottom-right panel of Figure 6) immediately jumps up as the adverse

selection problem in the credit market deteriorates sharply. As a result, production and output

collapse (the bottom-left panel). Since the time of this collapse in output is unpredictable ex
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Figure 6: Stochastic Switches between Branches

ante, consumption drops immediately (the top-left panel). Investment (the top-right panel)

falls for two reasons: one is to partially offset the fall in output to finance consumption, and

the other is due to the decline in the effective return as a result of severe adverse selection in

the credit market. The economy stays in crisis mode for about a year and then confidence is

restored and the recession is over. Interestingly output and investment both over-shoot when

the recession is over, and the longer the economy stays in recession, the larger this overshooting.

The longer recession, the smaller is the amount of capital left. So the return to investment is

very high, and the households opt to work hard and invest more to enjoy this high return from

investment. Figure 6 shows several large boom and bust cycles due to stochastic jumps in the

sunspot variables. This shows that there are rich multiple-equilibria in our benchmark model

regardless of the model parameters.

3 Reputation

We now study the sensitivity of our indeterminacy results to reputation effects under adverse

selection. If firms are not anonymous in the market, they may refrain from defaulting and
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instead may want to build their reputation. Lenders may also refrain from lending to firms with

a bad credit history. Arguably, these market forces can alleviate the asymmetric information

problem. So we examine whether the indeterminacy results obtained in our baseline model

survives if such reputational effects are taken into account.

We follow Kehoe and Levine (1993) closely in modeling reputation. Firms are infinitely-

lived, and can choose to default at any time. Firms that default may, with some probability,

acquire a bad reputation and are excluded from the credit market forever. In equilibrium, the

fear of loosing all future profits from production discourages firms from defaulting. We will

show that self-fulfilling equilibria still exist even if there are no defaults in equilibrium.

To keep the model analytically tractable, we assume that all firms are owned by a repre-

sentative entrepreneur. The entrepreneur’s utility function is given by

U(Cet) =

∫ ∞
0

e−ρet log(Cet)dt, (45)

where Cet is the entrepreneur’s consumption and ρe her discount factor. For tractability, we

assume ρe << ρ so that the entrepreneur does not accumulate capital. The entrepreneur’s

consumption equals the firm’s profits,

Cet =

∫ 1

0
Πt(i)di ≡ Πt, (46)

where Πt(i) denotes the profit of firm i.

Since the only cost of default is the loss of future production opportunities, the price must

exceed the marginal cost (also the average cost) of production to be profitable. If the price

exceeds the marginal cost, each firm will then have an incentive to produce an infinite amount.

To overcome this problem, we assume that the production projects of firms are indivisible, as

in the benchmark model, and that they produce to meet the orders they receive. A production

project produces a flow of final goods Φ from intermediate goods. Each unit of the final good

requires one unit of the intermediate good for its production. The project will be carried out

only if the firms receive a purchase order. Denote the total demand for the final good by Yt.

Then a fraction ηt = Yt/Φ of firms will receive a purchase order. Again we assume that firms

need to borrow to finance their working capital. Denote the intermediate good price by Pt, so

they need to borrow PtΦ to produce Φ.

To illustrate the reputation problem, let us consider a short time interval from t to t+ dt.

We use V1t (V0t) to denote the value of a firm that receives an order (no orders). We can then
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formulate V1t recursively as

V1t = (1− φt)Φdt+ e−ρedt
(

Ce,t
Ce,t+dt

)
(ηt+dtV1t+dt + (1− ηt+dt)V0t+dt) , (47)

where φt = Pt is the unit production cost. If φt < 1, then the firm receives a positive profit from

production. The second term on the right-hand side is the continuation value of the firms. Since

firms are owned by the entrepreneur, the future value is discounted by the marginal utility of

the entrepreneur. Since there is no default in equilibrium, the gross interest rate for a working

capital loan is Rft = 1.

The firms can also choose to default on their working capital, and obtain instantaneous gain

of Φφt. However, default comes with the risk of acquiring a bad reputation. Upon default, a

firm acquires a bad reputation in the short time interval between t and t+ dt with probability

λdt. In that case, the firm will be excluded from production forever. The payoff for defaulting

is hence

V d
t = Φdt+ e−ρedt(1− λdt)Et

(
Ce,t
Ce,t+dt

)
(ηt+dtV1t+dt + (1− ηt+dt)V0t+dt) . (48)

The value of a firm that does not receive any order is given by

V0t = e−ρedtEt

(
Ce,t
Ce,t+dt

)
(ηt+dtV1t+dt + (1− ηt+dt)V0t+dt) . (49)

Define Vt = ηtV1t + (1− ηt)V0t as the expected value of the firm. The firm has no incentive to

produce lemons if and only if V1t ≥ V d
t , or

Φdt ≤ (1− φt)Φdt+ λdte−ρedt
(

Ce,t
Ce,t+dt

)
Vt+dt. (50)

In the limit dt → 0, the incentive compatibility condition becomes φtΦ ≤ λVt.
15 Then the

expected value of the firm is given by the present discounted value of all future profits as

Vt =

∫ ∞
0

e−ρes
Cet
Ces

Πsds. (51)

For simplicity, we assume Φ is big enough such that ηt = Yt/Φ < 1 always holds. The average

profit is then obtained as Πt = (1−φt)Yt. Then using Cej = Πj and integrating the right hand

side of equation 51, we have

Vt =
(1− φt)Yt

ρe
. (52)

15Under the incentive compatibility condition we can consider one-step deviations since V1t,and V0t are then
optimal value functions.
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The households’ budget constraint changes to

Ct + It ≤ RtutKt +WtNt = φtYt. (53)

Then the incentive constraint (50) becomes

φtΦ ≤ λ
(1− φt)Yt

ρe
. (54)

From the household budget constraint (53), we know that household utility increases with φt

and thus the incentive constraint (54) must be binding. Then equation (54) can be simplified

as

φt =
Yt

πΦ + Yt
< 1, (55)

where now π ≡ ρe
λ . Similar to the baseline model, here firms also receive an information rent.

However, the rent in the baseline is derived from hidden information while the rent here arises

from hidden action. As indicated in equation (55), φt is procyclical and hence the markup is

countercyclical. When output is high, the total profit from production is high. Therefore the

value of a good reputation is high and the opportunity cost of defaulting also increases. This

then alleviates the moral hazard problem since high output dilutes information rent.

The cost minimization problem again yields the factor prices given by equation (20) and

(21). Since households do not own firms, their budget constraint is modified as

Ct + K̇t = φtYt − δ (ut)Kt. (56)

The equilibrium system of equations is the same as in the baseline model except that equation

(19) is replaced by equation (56). The steady state can be computed similarly. The steady

state output is given by

Y = A
1

1−α

[
αφθ

ρ (1 + θ)

] α
1−α

[(
1− α

1− α
1+θ

)
· 1

ψ

] 1
1+γ

≡ Y (φ), (57)

and φ can be solved from

Φ̄ ≡ πΦ ≡ Ψ(φ) =

(
1− φ
φ

)
· Y (φ). (58)

Unlike in the baseline model, here the steady state equilibrium is unique as Y (φ) is monotonic.16

We summarize the result in the following lemma.

16Note that compared to equation (32), φ is missing from the numerator of the second bracket in equation
(57).
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Lemma 3 If α < 1
2 , a consistently standard calibrated value of α, then the steady state equi-

librium is unique for any Φ̄ > 0.

We can now study the possibility of self-fulfilling equilibria around the steady state. Since

φ and Φ̄ form a one-to-one mapping, we will treat φ as a free parameter in characterizing the

indeterminacy condition. We can then use equation (58) to back out the corresponding value of

Φ̄. The following proposition specifies the condition under which self-fulfilling equilibria arises.

Proposition 3 Let τ = 1− φ. Then indeterminacy emerges if and only if

τmin < τ < min

{
1 + θ

α
− 1, τH

}
≡ τmax,

where τmin ≡ (1+θ)(1+γ)
(1+θ)(1−α)+α(1+γ) − 1, and τH is the positive solution to A1τ

2 − A2τ − A3 = 0,

where

A1 ≡ s (1 + θ) (2 + α+ αγ)

A2 ≡ (1 + θ) (1 + αγ)− s [(1 + θ) (1− α) (1− γ) + (1 + γ)α]

A3 ≡ (1 + θ) (1− α) [s+ (1− s) γ] .

Indeterminacy implies that the model exhibits multiple expectation-driven equilibria around

the steady state. The steady state equilibrium is now unique however, which suggests that the

continuum of equilibria implied by indeterminacy cannot be obtained in static models studied

the earlier literature. So far, the condition to sustain indeterminacy is given in terms of φ and

τ . The following corollary specifies the underlying condition in terms of ρe, λ and Φ.

Corollary 4 Indeterminacy emerges if and only if Ψ(1−τmin)
Φ < ρe

λ < Ψ(1−τmax)
Φ .

Given the other parameters, a decrease in ρe or an increase in λ increases the steady

state φ. According to the above lemma, it makes indeterminacy less likely. The intuition is

straightforward. A large λ means the opportunity cost of defaulting increases, as the firm

becomes more likely to be excluded from future production. This alleviates the moral hazard

problem, which is the source of indeterminacy. Similarly, a decrease of ρe means that the

entrepreneurs become more patient. So the future profit flow from production is more valuable

to them, which again increases the opportunity cost of producing lemons and thus alleviates

the moral hazard problem.
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4 Adverse Selection with Heterogeneous Productivity

Liu and Wang (2014) show that credit constraints can generate aggregate increasing returns

to scale. We now explore the possibility of increasing returns to scale by modifying our model

in Section 2 . The households’ problems as in the benchmark model and thus the first order

conditions are still equations (5), (6) and (7).

We now assume that the risk of lending to final good firms is continuous. We index the

final goods firms with j ∈ [0, 1]. Again each final goods firm has one production project, which

requires Φ units of the intermediate goods. The loan is risky as the final goods firms’ production

may not be successful. More specifically, we assume that final goods firm j’s output is governed

by

yjt =

{
ajtxjt, with probability qjt

0, with probability 1− qjt
, (59)

where xjt is the intermediate input for firm j and ajt the firm’s productivity. We assume qjt

is i.i.d. and drawn from a common distribution function F (q) and ajt = aminq
−τ
jt . So a higher

productivity ajt is associated with a lower probability of success qjt. Notice that expected

productivity is given by qjtajt = aminq
1−τ
jt . We assume however that τ < 1, i.e., a firm with

a higher success probability enjoys a higher expected productivity. Denote by Pt the price

of intermediate goods. Then the total borrowing is given by Ptxjt. Denote by Rft the gross

interest rate. Then final goods firm j′s profit maximization problem becomes

max
xjt∈{0,Φ}

qjt (ajtxjt −RftPtxjt) , (60)

Note that due to limited liability, the final goods firm pays back the working capital loan only

if the project is successful. This implies that, given Rft and Pt, the demand for xjt is simply

given by

xjt =

{
Φ if ajt > RftPt ≡ a∗t
0 otherwise

, (61)

or equivalently,

aminq
−τ
jt > a∗t , qjt <

(
a∗t
amin

)− 1
τ

= q∗t =

(
RftPt
amin

)− 1
τ

. (62)

This establishes that only firms with risky production opportunities will enter the credit mar-

kets, which highlights the adverse selection problem in the financial market. Firms with qjt > q∗t

are driven out of the financial market, despite their higher social expected productivity. Since

financial intermediaries are assumed to be fully competitive, we have

RftPtΦ

∫ q∗t

0
qdF (q) = PtΦ

∫ q∗t

0
dF (q), (63)
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where the left-hand side is the actual repayment from the final goods firms, and the right-hand

side is the actual lending. Then the interest rate is given by

Rft =
1∫ q∗t

0 qdF (q)/
∫ q∗t

0 dF (q)
=

1

E (q|q ≤ q∗t )
> 1, (64)

where the denominator is the average success rate. The above equation says that the interest

rate decreases with the average success rate.

The total production of final goods is

Yt =

∫ 1

0
qjajtxjtdF (q) = Φ

∫ q∗t

0
aminq

1−τdF (q). (65)

where the second equality follows equation (61). The total production of intermediate goods is

Xt = Φ

∫ q∗t

0
dF (q). (66)

Finally the intermediate goods are produced according to Xt = At (utKt)
αN1−α

t , where

utKt is the capital rented from the households. Combining equations (65) and (66) then yields

Yt = Γ(q∗t )At (utKt)
αN1−α

t , (67)

where Γ(q∗t ) =
(∫ q∗t

0 aminq
1−τdF (q)

)
/
∫ q∗t

0 dF (q) depends on the threshold q∗t and the distribu-

tion. The above equation then says that the measured TFP is obtained as

TFPt =
Yt

(utKt)αN
1−α
t

= Γ(q∗t )At. (68)

Since Γ′(q∗t ) =
aminf(q∗t )

∫ q∗t
0 (q∗1−τt −q1−τ)dF (q)(∫ q∗t
0 dF (q)

)2 > 0, the endogenous TFP increases with the thresh-

old q∗t . This is very intuitive: as the threshold increases, more firms with high productivity

enter the credit market, making resource allocation more efficient. Equation (65) implies that

q∗t increases with Yt, so we get the following lemma.

Lemma 4 TFP is endogenous and increase in Y, i.e.,
∂Γ(q∗t )
∂Yt

> 0.

We have therefore established that the endogenous TFP is procyclical. Notice that the

procyclicality of endogenous TFP holds generally for continuous distributions. So without

loss of generality, we now assume F (q) = qη for tractability. In turn, firm-level measured

productivity1
q follows a Pareto distribution with the shape parameter of η, which is consistent
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with the findings of a large literature (see, e.g., Melitz (2003) and references therein). Under

the assumption of a power distribution, combining equations (65) and (67) yields the aggregate

output

Yt =

(
η

η − τ + 1

)
aminΦ

− 1−τ
η
(
Atu

α
t K

α
t N

1−α
t

)1+ 1−τ
η . (69)

The intuition is as follows. Here a lending externality kicks in because of adverse selection

in the credit markets. Suppose that the total lending from financial intermediaries increases.

This creates downward pressure on interest rate Rft, which increases the cutoff q∗t according to

the definition in equation (62). Firms with a higher q have a smaller risk of default. A rise in

the cutoff q∗t therefore reduces the average default rate. If the rise is big enough, it can in turn

stimulate more lending from the financial intermediaries. Since firms with higher q are also

more productive on average, the increased efficiency in reallocating credit implies that resources

are better allocated across firms. Notice that the aggregate output again exhibits increasing

returns to scale. Equation (69) reveals that the degree of increasing returns to scale clearly

depends on the adverse selection problem and decreases with τ and η. When η =∞, the firms’

product quality is homogeneous. Hence there is no asymmetric information or adverse selection.

If τ = 1, firms are equally productive in the sense their expected productivity is the same. It

therefore does not matter how credits are allocated among firms. Given τ < 1, a smaller η

implies that firms are more heterogenous, creating a larger asymmetric information problem.

Similarly, given η, a smaller τ implies that the productivity of firms deteriorates faster with

respect to their default risk, making the adverse selection more damaging to resource allocation.

We formally state this result in the following proposition.

Proposition 4 The reduced-form aggregate production in our model exhibits increasing returns

to scale if and only if there exists adverse selection, i.e., τ < 1 and η <∞.

In an important contribution, Basu and Fernald (1997) document that increasing returns

to scale exist in aggregate production but not at the micro level. In a recent paper, Liu

and Wang (2014) show how credit constraints can generate endogenous variation in TFP, and

hence aggregate increasing returns. In their model, the less productive firms are driven out of

production. Different from Liu and Wang (2014), firms in our model do not suffer from credit

constraints; the more productive firms in our model are driven out of production due to adverse

selection.

As in the benchmark model, both the credit spread, Rft − 1, and the expected default

risk, 1− E (q|q ≤ q∗t ), are countercyclical. These predictions are consistent with the empirical
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regularities by Gilchrist and Zakraǰsek (2012) and many others.

4.1 Indeterminacy

It is straightforward to show that Wt = φ (1−α)Yt
Nt

and Rt = φ αYt
utKt

respectively. Here φ = η+1−τ
η+1

and is constant instead of procyclical. Together with equations (5), (6), (7), (69), and (19),

we can determine the seven variables, Ct, Yt, Nt, ut, Kt, Wt and Rt. The steady state can be

obtained as in the baseline model. We can express the other variables in terms of the steady

state φ. Since φ is unique, unlike in the baseline model, the steady state here is unique. We

assume that Φ is large enough so that an interior solution to q∗ is always guaranteed. The

following proposition summarizes the conditions for indeterminacy in this extended model.

Proposition 5 Given the power distribution, i.e., F (q) = (q/qmax)η, (or equivalently, firm

productivity conforms to a Pareto distribution), the steady state is unique. Moreover, the model

is indeterminate if and only if

σmin < σ < σmax (70)

where σ ≡ 1−τ
η , σmin ≡

(
1

1−α
1+γ

+ α
1+θ

)
− 1 and σmax ≡ 1

α − 1.

To better understand the proposition, we first consider how output responds to a funda-

mental shock, such as a change in A, the true TFP. Holding factor inputs constant, we have

1 + σ̃ ≡ d log Yt
d logA

= (1 + σ)

[
1 + θ

1 + θ − α (1 + σ)

]
> 1, (71)

The above equations show that adverse selection and variable capacity utilization can amplify

the impact of a TFP shock on output. Let us define 1+ σ̃ as the multiplier of adverse selection.

Note that the necessary condition σ > σmin can be written as

(1 + σ̃)(1− α)− 1 > γ. (72)

The model will be indeterminate if the multiplier effect of adverse selection is sufficiently large.

The restriction σ < σmax is typically automatically satisfied. The restriction σ < 1
α − 1 simply

requires that α(1 + σ) < 1, which is the condition needed to rule out explosive growth in the

model.

Whether the model is indeterminate or not, equation (71) implies that the response of

output to TFP shocks will be amplified. In addition, by Proposition 4, the economy is more

likely to be indeterminate if η is smaller. Our results are hence in the same spirit as those
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of Kurlat (2013) and Bigio (2014), showing that a dispersion in quality will strengthen the

amplification effect of adverse selection.

Empirical Possibility of Indeterminacy To empirically evaluate the possibility of in-

determinacy, we set the same values for ρ, θ, δ, α and γ as in Table 1.17 We also have new

parameters in this extended model, (τ, η). We use two moments to pin them down and set τ and

η to match the steady state markup η+1−τ
η+1 = 0.9. Basu and Fernald (1997) estimate aggregate

increasing returns to scale in manufacturing to approximately 1.1. So we set σ = 0.1. This leads

to τ = 0.55 and η = 4.5. We have σmin = 0.083 and σmax ≡ 2, which meet the indeterminacy

conditions. Hence, with these parameters the model exhibits self-fulfilling equilibria.

5 Conclusion

We have shown that in realistically calibrated dynamic general equilibrium models, adverse

selection in credit markets can generate a continuum of equilibria in the form of indetermina-

cy, either through endogenous markups or endogenous TFP. Adverse selection can therefore

potentially explain high output volatility and boom and bust cycles in the absence of funda-

mental shocks. For example, an RBC model with a negative TFP shock cannot fully explain

the increase in labor productivity during the Great Recession (see Ohanian (2010)). Yet this

feature of the Great Recession is consistent with the prediction of our baseline model in Section

2, and is driven by pessimistic beliefs about aggregate output. The pessimistic beliefs reduce

aggregate demand and increase markups, leading to a lower real wage and a lower labor supply.

Labor productivity however rises due to decreasing returns to labor.

To keep our analysis simple, we abstracted from some important features of the credit

markets, for example, runs on various financial intermediaries that may amplify the initial ad-

verse selection problem, as for example in the subprime mortgages during the Great Recession.

Future research may examine the effects of adverse selection among financial intermediaries.

17qmax and Φ do not affect the indeterminacy condition, so we do not need to specify their values.
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Appendix

A Proofs

Proof of Lemma 1: The proof is straightforward. First, from the explicit form of Y (φ),

we can easily prove that Ψ(φ) ≡
(

1−φ
φ

)
· Y (φ) strictly increases with φ when φ ∈ (0, φ∗) but

strictly decreases with φ when φ ∈ (φ∗, 1). Second, since Ψ(0) < Φ̄ < Ψ∗ = Ψ(φ∗), there exists

a unique solution between zero and φ∗, denoted by φ̄L, that solves Ψ(φ) = Φ̄. Likewise, there

also exists a unique solution between φ∗ and 1, denoted by φ̄H , that solves Ψ(φ) = Φ̄.

Proof of Lemma 2: Denote by ϕ1 and ϕ2 the eigenvalues of matrix J so that we have

ϕ1 + ϕ2 =Trace(J) and ϕ1ϕ2 =Det(J). Then the model is indeterminate if the trace of J is

negative and the determinant is positive. The trace and the determinant of J are

Trace (J)

δ
=

(
1 + θ

αφ

)
λ1 − (1 + τ)λ1 + θ (1 + τ)λ2,

Det (J)

δ2θ
= [(1 + τ)λ1 − 1 + λ2]

(
1 + θ

αφ
− 1

)
− τλ2,

respectively, where

λ1 =
a(1 + γ)

1 + γ − b(1 + τ)
, and λ2 = − b

1 + γ − b(1 + τ)
,

as defined in equation (36).

Substituting out λ1 and λ2 we obtain

Trace (J)

δ
=

[
1

γ + 1− (1 + τ)b

]
·
[(

1 + θ

αφ
− 1− τ

)
a(1 + γ)− θ(1 + τ)b

]

=

[(
θ

φ

)(
α (1 + γ) + (1 + θ) (1− α)

1 + θ − (1 + τ)α

)]
·

 (1+γ)(1+θ)
α(1+γ)+(1+θ)(1−α) − φ (1 + τ)

γ + 1− (1 + τ)b


=

[(
θ

φ

)(
α (1 + γ) + (1 + θ) (1− α)

1 + θ − (1 + τ)α

)]
·

 (1+γ)(1+θ)
α(1+γ)+(1+θ)(1−α) − 1 + τ2

γ + 1− (1 + τ)b


Notice that γ + 1− (1 + τ)b < 0 is equivalent to

τ > τmin ≡
(1 + γ) (1 + θ)

α(1 + γ) + (1 + θ)(1− α)
− 1.

Since τmin > 0, we know that

(1 + γ) (1 + θ)

α(1 + γ) + (1 + θ)(1− α)
− 1 + τ2 > 0.
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Therefore Trace(J) < 0 if and only if τ > τmin. It remains for us to determine the condition

under which Det(J) > 0. Note that Det(J) can be rewritten as

Det (J)

δ2θ
=

[
1

γ + 1− (1 + τ)b

]
·
[(

1 + θ

αφ
− 1

)
((1 + γ) [a(1 + τ)− 1] + τb) + τb

]
=

1 + θ

(1 + τ)b− (γ + 1)

{
(1 + γ)(1− α)−

[
(1− α)(1 + θ)

(1 + θ − αφ)
+ (1 + γ)α

]
τ

}
.

If τ < τmin, then we immediately have Det(J) < 0. Thus to guarantee that Det(J) > 0, we

must have τ > τmin, which then implies that (1 + τ)b − (γ + 1) > 0. As a result, given that

τ > τmin, Det(J) > 0 if and only if

(1 + γ)(1− α)−
[

(1− α)(1 + θ)

1 + θ − αφ
+ (1 + γ)α

]
τ > 0,

which can be further simplified as

τ <
(1 + γ)(1− α)

(1−α)(1+θ)
1+θ−αφ + (1 + γ)α

.

Since φ = 1− τ , the above inequality can be reformulated as

∆ (τ) ≡ α2τ2 +

[
αθ +

(1− α) (1 + θ)

(1 + γ)

]
τ − (1− α) (1 + θ − α) < 0.

Denote ξ ≡ αθ + (1−α)(1+θ)
(1+γ) . Then det(J) > 0 if and only if τ > τmin and

τ < τmax ≡
−ξ +

√
ξ2 + 4α2 (1− α) (1 + θ − α)

2α2
.

It remains for us to prove that τH = 1 − φ∗, where φ∗ = arg max0≤φ≤1 Ψ(φ). The first-order

condition of log Ψ(φ) suggests(
1

1 + γ
+

2α− 1

1− α

)(
1

φ

)
+

(
1

1 + γ

)(
α

1 + θ

)(
1

1− αφ
1+θ

)
− 1

1− φ
= 0,

which is equivalent to

Γ (φ) ≡ α2φ2 −
[

(1− α) (1 + θ)

1 + γ
+ αθ + 2α2

]
φ+

[
(1− α) (1 + θ)

1 + γ
+ (2α− 1) (1 + θ)

]
= 0.

Besides, we can easily verify that, for φ ∈ (0, 1), it always holds that

d2

dφ2
(log Ψ(φ)) < 0.

Since τ ≡ 1 − φ, we know that ∆ (1− φ) = Γ (φ). Denote by φ1 and φ2 the solutions to

Γ (φ) = 0. Note that φ1 + φ2 > 0, φ1 · φ2 > 0, and Γ (0) > 0, Γ (1) > 0. Therefore we know

that 0 < φ1 < 1 < φ2. Consequently we conclude that

φ∗ = φ1 = 1− τmax ∈ (0, 1) .
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Proof of Proposition 1: Notice that, by definition, τmax = 1 − φmin. Therefore we have

φmin = φ∗. Then by Lemma 2 we know that

1. If φ < φmin, then Trace(J) < 0, and Det(J) < 0.

2. If φ ∈ (φmin, φmax), then Trace(J) < 0, and Det(J) > 0.

3. If φ > φmax, then Trace(J) > 0, and Det(J) < 0.

Proof of Corollary 1: First, when adverse selection is severe enough, i.e., Φ̄ = πΦ ≥
Ψmax, the economy collapses. The only equilibrium is the trivial case with φ = 0. Given that

Φ̄ < Ψmax, Lemma 1 implies that there are two solutions, which are denoted by
(
φ̄H , φ̄L

)
. It

always holds that φ̄L < φ∗ < φ̄H . Then Lemma 2 immediately suggests that the steady state

φ̄L is always a saddle. Since Ψ(φ) decreases with φ when φ > φ∗, as shown in Proposition 1,

indeterminacy emerges if and only if φ ∈ (φ∗, φmax). Therefore the local dynamics around the

steady state φ = φ̄H exhibits indeterminacy if and only if Ψ(φmax) < Φ̄ < Ψmax.

Proof of Corollary 2: Holding Φ constant, Φ̄ increases with π, the proportion of firms

producing lemon products. As is proved in Corollary 1, given Φ̄ < Ψmax, indeterminacy

emerges if and only if Φ̄ > Ψ(φmax). Therefore the likelihood of indeterminacy increases with

π.

Proof of Proposition 2: As shown in Section 2, the dynamical system on (Ct,Kt) is given

by

Ċt
Ct

=

(
θ

1 + θ

)
αφt

Yt
Kt
− ρ, (A.1)

K̇t = Yt −

(
δ0 u

1+θ
t

1 + θ

)
Kt − Ct. (A.2)

where

u1+θ
t =

α

δ0

φtYt
Kt

, (A.3)

Yt = Y (φt) ≡
(

φt
1− φt

)
πΦ, (A.4)

and

δ (ut) ≡ δ0 u
1+θ
t

1 + θ
,
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in which δ0 = ρ
θ (1 + θ) so that u = 1 at the steady state.

First, equation (A.3) implies

ut =

(
αφtYt
δ0Kt

) 1
1+θ

,

and thus we have

N1−α
t =

Yt
Auαt K

α
t

=
Y

1− α
1+θ

t φ
− α

1+θ

t K
− αθ

1+θ

t

A
(
α
δ0

) α
1+θ

. (A.5)

Substituting equation (A.5) into (5) yieldsY 1− α
1+θ

t φ
− α

1+θ

t K
− αθ

1+θ

t

A
(
α
δ0

) α
1+θ

1+γ

=

[(
1

Ct

)(
1− α
ψ

)
φtYt

]1−α
,

which can be further simplified as

Y
(1− α

1+θ )(1+γ)

t φ
−α(1+γ)

1+θ

t K
−αθ(1+γ)

1+θ

t

A1+γ
(
α
δ0

)α(1+γ)
1+θ

= C
−(1−α)
t

(
1− α
ψ

)(1−α)

φ1−α
t Y 1−α

t ,

or equivalently,

C1−α
t = A1+γ

( α
δ0

)α(1+γ)
1+θ

(
1− α
ψ

)(1−α)

φ
1−α+

α(1+γ)
1+θ

t Y
1−α−(1− α

1+θ )(1+γ)

t K
αθ(1+γ)

1+θ

t . (A.6)

Substituting equation (A.4) into (A.6) yields

Ct = C (φt,Kt) = f0 · g (φt) · h(Kt), (A.7)

where f0 = A
1+γ
1−α

(
α
δ0

) α(1+γ)
(1+θ)(1−α)

(
1−α
ψ

)
, h(Kt) = K

αθ(1+γ)
(1+θ)(1−α)
t , and

g (φt) =

[
φ

1−α+
α(1+γ)
1+θ

t Y (φt)
1−α−(1− α

1+θ )(1+γ)

] 1
1−α

.

In turn, differentiating both sides of equation (A.7) yields

C1−α
t = A1+γ

( α
δ0

)α(1+γ)
1+θ

(
1− α
ψ

)(1−α)

φ
1−α+

α(1+γ)
1+θ

t Y
1−α−(1− α

1+θ )(1+γ)

t K
αθ(1+γ)

1+θ

t ,

which immediately implies
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(1− α)

·
Ct
Ct

=

(
1− α+

α (1 + γ)

1 + θ

) ·
φt
φt

+

(
1− α−

(
1− α

1 + θ

)
(1 + γ)

) ·
Yt
Yt

+

(
αθ (1 + γ)

1 + θ

) ·
Kt

Kt

=

(
1− α+

α (1 + γ)

1 + θ
+

(
1− α−

(
1− α

1 + θ

)
(1 + γ)

)
Y ′ (φt)φt
Y (φt)

) ·
φt
φt

+

(
αθ (1 + γ)

1 + θ

) ·
Kt

Kt

=

(
1− α+

α (1 + γ)

1 + θ
−
((

1− α

1 + θ

)
(1 + γ)− (1− α)

)(
1

1− φt

)) ·
φt
φt

+

(
αθ (1 + γ)

1 + θ

) ·
Kt

Kt

=

(
1− α+

α (1 + γ)

1 + θ

)(
φmax − φt

1− φt

) ·
φt
φt

+

(
αθ (1 + γ)

1 + θ

) ·
Kt

Kt
(A.8)

Additionally, we have

ut =

(
α

δ0

φtY (φt)

Kt

) 1
1+θ

≡ u (Kt, φt) . (A.9)

In the end, substituting equation (A.7) and (A.9) into (A.1) and (A.2) yields

(
1− α+

α (1 + γ)

1 + θ

)(
φmax − φt

1− φt

) ·
φt
φt

+

(
αθ (1 + γ)

1 + θ

) ·
Kt

Kt
= (1− α)

(
αθ

1 + θ
φt
Y (φt)

Kt
− ρ
)
,

K̇t =

(
1− αφt

1 + θ

)
Y (φt)− C (φt,Kt) ,

the desired autonomous dynamical system in Proposition 2.

Proof of Corollary 3: We can easily verify that g (0) = g(1) = 0, g′′ (φ) < 0, and

g′ (φmax) = 0, where φmax = 1 − τmin, and τmin is defined in Lemma 2. Therefore we have

φmax = arg max g (φ) . It then follows from equation (43) that Ct is a hump-shaped function of

φt for a given level of Kt. Then we immediately obtain the results in Lemma 3.

Proof of Lemma 3: Notice that Ψ(φ) =
(

1−φ
φ

)
· Y (φ) ∝ (1 − φ)φ

2α−1
1−α . When α < 1

2 , we

know that (1 − φ)φ
2α−1
1−α is decreasing in φ. It is easy to check that limφ→0 Ψ(φ) = ∞ and

limφ→1 Ψ(φ) = 0. Hence equation (58) uniquely pins down the steady state φ for any Φ̄ > 0.
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Proof of Proposition 3: The dynamical system with reputation is given by

ψNγ
t =

1

Ct
(1− α)φt

Yt
Nt
,

Ċt
Ct

= αφt
Yt
Kt
− δ(ut)− ρ,

αφt
Yt
utKt

= δ0uθt ,

Ct + K̇t + Cet = Yt − δ (ut)Kt,

Yt = A (utKt)
αN1−α

t ,

φt =
Yt

πΦ + Yt
,

Cet = (1− φt)Yt,

where π ≡ ρe
λ . Denote s ≡ 1 − α

1+θ . Then some of the key ratios in the steady state can be

obtained as

ky =
K

Y
=

αφθ

ρ (1 + θ)
,

cy =
C

Y
= sφ =

(
1− α

1 + θ

)
φ,

N =

[
(1− α)φ

cy
· 1

ψ

] 1
1+γ

=

[(
1− α

1− α
1+θ

)
· 1

ψ

] 1
1+γ

,

Y = A
1

1−α (ky)
α

1−α N = A
1

1−α

[
αφθ

ρ (1 + θ)

] α
1−α

[(
1− α

1− α
1+θ

)
· 1

ψ

] 1
1+γ

. (A.10)

We can use equation (58) to solve for the steady state φ and use equation (A.10) to obtain the

steady state Y . Consumption and capital can then be computed from C = cyY and K = kyY ,

respectively. The log-linearization of the system of equilibrium equations is given by:

0 = φ̂t + ŷt − (1 + γ) n̂t − ĉt,

ċt = ρ
(
φ̂t + ŷt − k̂t

)
,

ŷt = α
(
ût + k̂t

)
+ (1− α)n̂t,

ût =
1

1 + θ
(φ̂t + ŷt − k̂t),

k̇t =

(
sφ

ky

)(
φ̂t + ŷt − k̂t

)
−
(
cy
ky

)(
ĉt − k̂t

)
,

φ̂t = (1− φ) ŷt ≡ τ ŷt.
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As in the baseline model, we can substitute ût and φ̂t to obtain a reduced form of output in

terms of capital and labor as

ŷt =
αθk̂t + (1 + θ)(1− α)n̂t

1 + θ − (1 + τ)α
≡ ak̂t + bn̂t,

where a ≡ αθ
1+θ−(1+τ)α and b ≡ (1+θ)(1−α)

1+θ−(1+τ)α . We assume τ < 1+θ
α − 1, which is a reasonable

restriction under standard calibrations, so that a > 0 and b > 0. Finally n̂t can be expressed

as a function of ŷt and ĉt, and thus we have

ŷt =
a(1 + γ)

1 + γ − b(1 + τ)
k̂t −

b

1 + γ − b(1 + τ)
ĉt ≡ λ1k̂t + λ2ĉt,

where λ1 ≡ a(1+γ)
1+γ−b(1+τ) and λ2 ≡ − b

1+γ−b(1+τ) . Consequently the local dynamics is character-

ized by the following differential equations:[
k̇t
ċt

]
= δ

[ (
1+θ
αφ

)
sφ (1 + τ)λ1

(
1+θ
αφ

)
[sφ (1 + τ)λ2 − (1− sφ)]

θ [(1 + τ)λ1 − 1] θ(1 + τ)λ2

] [
k̂t
ĉt

]
,

≡ J

[
k̂t
ĉt

]
,

where s ≡ 1− α
1+θ , cy = sφ, δ = ρ/θ. The local dynamics around the steady state is determined

by the roots of J. Notice that the trace and the determinant of J are

Trace (J)

δ
=

(
1 + θ

α

)
s (1 + τ)λ1 + θ(1 + τ)λ2 < 0,

Det (J)

δ2θ
(

1+θ
αφ

) = sφ (1 + τ)λ2 + (1− sφ) (1 + τ)λ1 − (1− sφ) > 0.

Similar to the analysis of the indeterminacy for our baseline model, here Trace(J) < 0 if and

only if τ > τmin ≡ (1+θ)(1+γ)
(1+θ)(1−α)+α(1+γ) − 1. Given that τ > τmin, some algebraic manipulation

shows that Det(J) > 0 if and only if τ < 1+θ
α − 1, and

A1τ
2 −A2τ −A3 < 0,

where

A1 ≡ s (1 + θ) (2 + α+ αγ) > 0

A2 ≡ (1 + θ) (1 + αγ)− s [(1 + θ) (1− α) (1− γ) + (1 + γ)α]

A3 ≡ (1 + θ) (1− α) [s+ + (1− s) γ] > 0.

Therefore A1τ
2 − A2τ − A3 < 0 if and only if τ < τH , where τH is the positive solution to

A1τ
2 −A2τ −A3 = 0.
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Proof of Corollary 4: Combining Lemma 3 and Proposition 2 immediately yields the desired

result.

Proof of Lemma 4: First, using the Implicit Function Theorem, equation (67) suggests that
∂q∗

∂Y > 0. Second, since TFP = Γ(q∗)A, it is obvious that ∂TFP
∂q∗ > 0. Then using the chain rule

gives ∂TFP
∂Y =

(
∂TFP
∂q∗

)(
∂q∗

∂Y

)
> 0.

Proof of Proposition 4: We immediately reach the proposition by observing equation (69).

Proof of Proposition 5: First, given the power distribution, i.e., F (q) = (q/qmax)η, we can

analytically obtain the dynamical system, and then easily verify the uniqueness of the steady

state. It remains for us to pin down the indeterminacy region. To establish the conditions

for indeterminacy, we first log-linearize the equilibrium equations. Substituting ût from the

log-linearized equation (24), we obtain

ŷt = ak̂t + bn̂t,

where a = θα(1+σ)
1+θ−α(1+σ) and b = (1+θ)(1−α)(1+σ)

1+θ−α(1+σ) . Finally, expressing n̂t from the log-linearized

equation (22), we obtain

ŷt = λ1k̂t + λ2ĉt,

where λ1 ≡ a(1+γ)
1+γ−b and λ2 ≡ − a

1+γ−b . We hence obtain a two-dimensional system of differential

equations [
k̇t
ċt

]
= δ

[ (
1+θ
αφ − 1

)
λ1

(
1+θ
αφ

)
(λ2 − 1) + 1− λ2

θ (λ1 − 1) θλ2

] [
k̂t
ĉt

]
≡ J

[
k̂t
ĉt

]
where δ = ρ/θ. The local dynamics around the steady state is determined by the roots of J.

The trace and the determinant of J are

Trace (J)

δ
=

(
1 + θ

αφ
− 1

)
λ1 + θλ2 =

(
1+θ
αφ − 1

)
(1 + γ) a− θb

1 + γ − b
,

det (J)

δ2θ
=

(
1 + θ

αφ
− 1

)
(λ1 − 1 + λ2) =

(
1 + θ

αφ
− 1

)[
(1 + γ) (a− 1)

1 + γ − b

]
.

Indeterminacy arises if Trace(J) < 0 and det(J) > 0. Under the assumption a < 1, or

α(1 + σ) < 1, Det(J) > 0 is equivalent to 1 + γ − b, or σ > σmin ≡
(

1
1−α
1+γ

+ α
1+θ

)
− 1. Then

42



Trace(J) < 0 requires
(

1+θ
αφ − 1

)
(1 + γ) a > θb. Rearranging terms yields the requirement,

(1+σ)η
1+η <

(
1

1−α
1+γ

+ α
1+θ

)
. Recall that σ = 1−χ

χ+η , or (1+σ)η
1+η = η

χ+η , so that this requirement is

automatically satisfied.
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