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Abstract

In this paper we propose a downside risk measure, the expectile-based Value at Risk

(EVaR), which is more sensitive to the magnitude of extreme losses than the conventional

quantile-based VaR (QVaR). The index θ of an EVaR is the relative cost of the expected

margin shortfall and hence reflects the level of prudentiality. It is also shown that a

given expectile corresponds to the quantiles with distinct tail probabilities under different

distributions. Thus, an EVaR may be interpreted as a flexible QVaR, in the sense that

its tail probability is determined by the underlying distribution. We further consider

conditional EVaR and propose various Conditional AutoRegressive Expectile models that

can accommodate some stylized facts in financial time series. For model estimation, we

employ the method of asymmetric least squares proposed by Newey and Powell (1987,

Econometrica) and extend their asymptotic results to allow for stationary and weakly

dependent data. We also derive an encompassing test for non-nested expectile models. As

an illustration, we apply the proposed modeling approach to evaluate the EVaR of stock

market indices.

JEL classification: C22, C51

Keywords: asymmetric least squares, CARE model, expectile, quantile, prudentiality,

Value at Risk



1 Introduction

Finding a proper risk measure is crucial in financial risk management. Distinct risk mea-

sures have different impacts on asset pricing, portfolio hedging, capital allocation, and

investment performance evaluation. When downside risk is of primary concern, the upside

and downside movements of returns may be treated differently; see, e.g., Markowitz (1952),

Fishburn (1977) and Kahneman and Tversky (1979). A leading downside risk measure

is Value at Risk (VaR). A VaR with the confidence level (1 − α), α ∈ (0, 1), is defined

as the possible maximum loss for a given holding period with probability (1 − α); see,

e.g., Jorion (2000). Clearly, VaR is the negative of the α-th quantile of the underlying

return distribution, and it can be obtained by minimizing asymmetrically weighted mean

absolute deviations, with the weights α and (1 − α) assigned to positive and negative

deviations, respectively. Bassett, Koenker and Kordas (2004) show that such asymmet-

ric weighting scheme is in line with certain distorted probability assessment employed in

Choquet expected theory and capable of describing pessimism.

An undesirable property of the existing VaR measure is that it is insensitive to the

magnitude of extreme losses. This is so because a VaR, as the quantile with a given tail

probability, depends only on the probability (relative frequency) of more extreme realiza-

tions but not on their values. It is therefore easy to construct two return distributions

that have very different tail behaviors and the same VaR. When the magnitude of loss

matters, a quantile-based VaR (henceforth QVaR) may be considered too liberal or too

conservative, depending on the tail shape of the underlying distribution. This suggests

that QVaR with a given tail probability may not always be an appropriate downside risk

measure. Indeed, practitioners and regulators are usually more concerned with the risk

exposure in terms of the size of potential losses, for a catastrophic event may completely

wipe out an investment.

To avoid the aforementioned problem with QVaR, we propose a downside risk measure

that is more tail sensitive. This measure is defined on the expectile introduced in Newey

and Powell (1987) and will be referred to as expectile-based VaR (henceforth EVaR).1

The θ-th expectile is the solution to the minimization of asymmetrically weighted mean

squared errors, with the weights θ and (1−θ) assigned to positive and negative deviations,
1Our EVaR is different from the E-VaR of Aı̈t-Sahalia and Lo (2000) which is based on economic

valuation of VaR. Some researches also propose estimating quantiles from expectiles, e.g., Efron (1991),

Sin and Granger (1999), and Taylor (2008).
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respectively. Owing to the quadratic loss function, expectiles, and hence EVaR’s, are

sensitive to extreme values of the distribution.

Taking EVaR as a margin requirement, it will be shown that θ is the relative cost of the

expected margin shortfall. A larger (smaller) EVaR is a more (less) prudential margin and

results in a smaller (larger) expected margin shortfall. As such, an EVaR is a risk measure

under a given level of prudentiality. Moreover, it can be seen that the EVaR with a given θ

corresponds to the QVaR’s with distinct tail probabilities α under different distributions.

Thus, EVaR may be interpreted as a flexible QVaR, in the sense that its confidence level

(or tail probability) is not specified a priori but is determined by the underlying return

distribution. This is in contrast with the conventional QVaR with a given α.

In this paper, we extend EVaR to conditional EVaR and propose various Conditional

AutoRegressive Expectile (CARE) models that are capable of accommodating some styl-

ized facts in financial time series. These CARE models are similar but not the same as the

CAViaR models proposed by Engle and Manganelli (2004). While CAViaR models rely on

the quantile regression method of Koenker and Bassett (1978), the CARE models can be

estimated using the method of asymmetric least squares (ALS) proposed by Newey and

Powell (1987). To make the ALS method applicable in the dynamic context, we extend the

asymptotic results of Newey and Powell (1987) to allow for stationary and weakly depen-

dent data. We also derive an encompassing test for non-nested CARE model specifications,

which is analogous to the conditional mean encompassing test of Wooldridge (1990).2 As

an illustration, we apply the proposed CARE modeling approach to assess the EVaR of

various stock indices.

This paper is organized as follows. We discuss the properties of expectiles and intro-

duce the EVaR measure in Section 2. We present CARE model specifications, establish

asymptotic properties of the ALS estimator, and derive an encompassing test in Section 3.

The empirical results are reported in Section 4. Section 5 concludes the paper. All tech-

nical proofs are deferred to Appendix.
2Taylor (2008) also proposes CARE models for estimating expectiles, yet his focus is different from

ours. First, he does not define a risk measure based on expectiles. Second, he is mainly concerned with

the determination of QVaR based on expectiles. As such, his CARE models are the same as the CAViaR

models of Engle and Manganelli (2004). Third, he does not discuss the asymptotic properties of the ALS

estimator and model specification test in the dynamic context. Taylor’s paper was brought to our attention

at the final stage of this paper.
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2 Expectile-Based VaR

Let Y denote an asset return with the distribution function FY . Given an α ∈ (0, 1), the

QVaR of Y with the confidence level 1 − α (or the tail probability α) is the negative of

the α-th quantile of FY : QVaR(α) = −q(α). It is well known that the α-th quantile can

be obtained by minimizing asymmetrically weighted mean absolute deviations:

IE
[
|α− 1{Y≤q}| · |Y − q|

]
, (1)

where 1A is the indicator of the event A. Thus, a QVaR is a natural product of an

optimization problem with an asymmetric linear loss function. The first order condition

of minimizing (1) is α
∫∞
q dFY (y) + (α− 1)

∫ q
−∞ dFY (y) = 0, which implies∫ q

−∞ dF (y)∫ q
−∞ dF (y) +

∫∞
q dF (y)

=
∫ q

−∞
dF (y) = α. (2)

This shows that q(α) depends only on the probability of extreme losses but not their

magnitude.

That QVaR is insensitive to the magnitude of extreme losses is a serious drawback

in assessing tail risk. To be sure, consider two returns YA and YB with the following

probability functions:

fYA
(y) =


0.45, y ∈ [0, 2),

0.05, y ∈ [−2, 0),

0, otherwise;

fYB
(y) =


0.45, y ∈ [0, 2),

0.05, y ∈ [−1, 0),

0.025, y ∈ [−3,−1),

0, otherwise.

Despite that YB may have a larger loss than YA, it is easily seen that QVaRYA
(0.1) =

QVaRYB
(0.1) = 0 and QVaRYA

(0.05) = QVaRYB
(0.05) = 1. In fact, for any c > 1, the

return YC with

fYC
(y) =


0.45, y ∈ [0, 2),

0.05, y ∈ [−1, 0),

0.05/(c− 1), y ∈ [−c,−1),

0, otherwise,

also yields the same QVaRs with the tail probabilities 10% and 5%, even though it may

have much larger losses with a positive probability.
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2.1 Expectile vs. Quantile

Newey and Powell (1987) consider a quadratic loss function with a weighting scheme

similar to that in (1):

IE
[
ρθ(Y − ν)

]
:= IE

[
|θ − 1{Y≤ν}| · |Y − ν|2

]
, (3)

where θ ∈ [0, 1] determines the degree of asymmetry of the loss function. The minimizer

of (3), ν(θ), is known as the θ-th expectile of Y . Clearly, (3) reduces to the standard

least-squares objective function when θ = 0.5, and ν(0.5) is just the expectation of Y . An

expectile is also a quantile. Similar to q(α), Newey and Powell (1987) show that ν(θ) is

monotonically increasing in θ and is location and scale equivariant, in the sense that for

Ỹ = aY + b and a > 0, νỸ (θ) = a νY (θ) + b.

The first order condition of minimizing (3) is

θ

∫ ∞
ν
|y − ν| dFY (y) + (θ − 1)

∫ ν

−∞
|y − ν| dFY (y) = 0.

Straightforward calculation shows that the expectile ν(θ) satisfies∫ ν
−∞ |y − ν| dF (y)∫ ν

−∞ |y − ν| dF (y) +
∫∞
ν |y − ν| dF (y)

=

∫ ν
−∞ |y − ν| dF (y)∫∞
−∞ |y − ν| dF (y)

= θ, (4)

which is the ratio of the deviations of Y below ν to the overall deviations of Y from ν, both

weighted by the distribution function. Hence, ν(θ) depends on both the tail realizations

of Y and their probability, whereas q(α) is determined solely by the tail probability.

From (4), it can also be verified that

ν(θ) = γ IE
[
Y |Y > ν(θ)

]
+ (1− γ) IE

[
Y |Y ≤ ν(θ)

]
,

where γ = θ[1 − FY (ν(θ))]/{θ[1 − FY (ν(θ))] + (1 − θ)FY (ν(θ))} may be interpreted as

a weighted probability of Y > ν(θ). Thus, ν(θ) is an average that balances between

IE[Y |Y > ν(θ)] (conditional upside mean) and IE[Y |Y ≤ ν(θ)] (conditional downside

mean). This property distinguishes expectile from expected shortfall because the latter is

determined only by a conditional downside mean.

For any α ∈ (0, 1), let θ(α) be such that νY (θ(α)) = qY (α). Yao and Tong (1996) show

that θ(α) is related to q(α) via:

θ(α) =
α · q(α)−

∫ q(α)
−∞ y dF (y)

IE[Y ]− 2
∫ q(α)
−∞ y dF (y)− (1− 2α)q(α)

.
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Figure 1: The correspondence between α and θ: θ(α) function.

For example, when Y has a uniform distribution on [−a, a], q(α) = 2αa − a and θ(α) =

α2/(2α2− 2α+ 1). Thus, for α = 1%, 5%, 10%, 25%, 50%, the corresponding q(α) are ν(θ)

with θ = 0.01%, 0.27%, 1.2%, 10%, 50%, respectively. For other distributions, we examine

the correspondence between α and θ(α) via Monte Carlo simulations. We plot θ(α) for

the standard normal, logistic and t(3) distributions in Figure 1, with α on the horizontal

axis and θ(α) on the vertical axis.

We can see that for α < (>) 0.5, the θ(α) curves all lie below (above) the 45◦ line

where α = θ(α).3 For a given α < 0.5, θ(α) is larger for the distribution with thicker tails.

For the example discussed in the beginning of this section, θ(0.05) is approximately 0.011

for YA and 0.027 for YB. That is, although q(0.05) is the same for YA and YB, it is an

expectile corresponding to different θ for YA and YB, and hence different risk exposures

in terms of weighted magnitude of extreme losses. Similarly, for a given θ < 0.5, the

corresponding α would be smaller if the distribution has thicker tails. Thus, an expectile

with a given θ corresponds to quantiles with different α under distinct distributions, and

hence represents different risk exposures in terms of the probability (frequency) of tail

losses. Table 1 summarizes the α values implied by a given θ under various distributions.
3The 45◦ line represents the distribution whose expectiles agree with quantiles when θ = α.

Koenker (1992) showed that its distribution function is

F (y) =


1
2
(1 +

√
1− 4

4+y2 ), y ≥ 0,

1
2
(1−

√
1− 4

4+y2 ), y < 0,

which has finite mean, infinite variance, and algebraic tails.
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Table 1: Implied α values under different distributions.

θ U(−a, a) N (0, 1) t(30) t(10) t(5) t(3)

1% 9.2% 4.3% 4.0% 3.5% 3.0% 2.4%

3% 15.0% 9.1% 8.8% 8.0% 6.8% 5.6%

5% 18.6% 12.6% 12.3% 11.5% 10.0% 8.5%

10% 25.0% 19.5% 19.0% 18.3% 16.6% 14.5%

25% 36.6% 33.2% 32.8% 32.2% 31.9% 29.4%

Figure 2: The catastrophic loss sensitivity of quantile, expectile and conditional tail mean

To illustrate the sensitiveness of different risk measures to tail events, we compare

the relative performance of quantile, expectile, and conditional downside (tail) mean in

the presence of catastrophic loss, using Monte Carlo experiments. Similar to Duffie and

Pan (1997), the data are independently drawn from N (0, 1/
√

1− P ) with probability

1 − P or from N (c, 1/
√
P ) with probability P , cf. Gourieroux and Jasiak (2002). By

setting P to a value close to 0, the observations are often drawn from N (0, 1/
√

1− P ),

and there may be infrequent catastrophic losses taken from the more disperse distribution

N (c, 1/
√
P ). In our simulations, c ∈ [−1,−50], the sample size is 1000, and the number

of replications is 1000. In Figure 2, we plot the quantiles with α = 0.01 and 0.05, the

expectiles with θ = 0.01 and 0.05, and the conditional downside means based on q(0.01)

and q(0.05). The left panel is the case that P = α = θ = 0.01, and the right panel is

P = 0.01 with α = θ = 0.05.
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From Figure 2 it is clear that the expectile and conditional downside mean vary with

c, but the corresponding quantile may not. When P < α, the quantile is not affected by

the extreme values from N (c, 1/
√
P ) and hence remains constant across c. A qunatile

would change with c when the chosen α level happens to be the same as (or smaller than)

the probability of the tail distribution, P , yet its magnitude is smaller than that of the

expectile for all c. These results show that the danger of basing a risk measure on the

quantile with a given α level, as it may not respond properly to catastrophic losses. It is

also clear that the conditional downside mean depends only on the tail event and hence

is much larger (more conservative) than corresponding expectile and quantile.

2.2 Expectile-Based VaR

The properties discussed above suggest that an expectile, which takes into account the

magnitude of loss, may serve as a better measure for tail risk. We thus define EVaR,

expectile-based VaR, with the index θ < 1/2 as EVaR(θ) = |ν(θ)|.

We now give an intuitive interpretation for θ. Taking |ν(θ)| as a margin (capital

requirement),
∫ ν(θ)
−∞ |y − ν(θ)| dF (y) is the expected margin shortfall and a potential cost

for more extreme losses, and
∫∞
ν(θ) |y − ν(θ)| dF (y) is an opportunity cost due to the

expected margin overcharge. The sum of these two costs,
∫∞
−∞ |y − ν(θ)| dF (y), is thus

the expected total cost of holding the capital requirement |ν(θ)|. In view of (4), θ can be

understood as the relative cost of the expected margin shortfall. A larger |ν(θ)| is a more

prudential margin requirement and results in smaller expected margin shortfall and hence

θ; see also Lam, Sin, and Leung (2004) for related discussion. As such, θ will be referred

to as an index of prudentiality.

Similar to the definition of QVaR, the θ-th EVaR is understood as the maximal possible

loss within a given holding period under the prudentiality level (1−θ). Since EVaR is also

a QVaR, it is also the maximal possible loss within a holding period with the confidence

level (1−α∗), where α∗ is the ex post tail probability associated with the EVaR. Moreover,

EVaR in effect balances between the cost of margin shortfall and the opportunity cost due

to margin overcharge, as discussed in the preceding paragraph, and is hence in line with a

major task of the clearinghouse of futures market; see, e.g., Baer, France, and Moser (1994)

and Booth, Broussard, Martikainen, and Puttonen (1997).

We emphasize that EVaR can be interpreted as a flexible QVaR for the underlying

return distribution. Ideally, one would choose a smaller (larger) α for QVaR if the left tail
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of the return distribution were known to be thicker (thinner). Yet, the shape of a return

distribution is rarely known in practice, and α is typically set by regulators and/or the

management level. For example, J. P. Morgan reveals its daily QVaR at the tail level of

5%; the Bank of International Settlements sets QVaR for evaluating the adequacy of bank

capital at 1% level. These choices of α are pre-determined and may not be able to reveal

the potential risk when the return distribution exhibits different shapes over time. By

contrast, the expectile with a given θ corresponds to the quantiles with distinct α values

under different distributions. Thus, instead of finding the QVaR with a pre-determined α,

we may identify the EVaR with a given θ and allow the data to reveal their risk in terms

of the tail probability α, as shown in Figure 1.

3 CARE Model Specification and Estimation

The concept of expectiles is readily extended to conditional expectiles. In this section we

first introduce conditional expectile models for EVaR, which are similar to but different

from those of Engle and Manganelli (2004) and Taylor (2008). We shall also establish the

asymptotic properties of the ALS estimator under more general conditions and derive an

encompassing test for non-nested models.

3.1 Model Specifications

Given a collection of k variables, X, in the information set F , let µθ(X) denote the θ-th

expectile of Y conditional on F . We shall consider the linear specification X ′β(θ), with

β(θ) a k×1 parameter vector. When the data (yt,x′t)′ are available, the linear specification

can be expressed as:

yt = x′tβ(θ) + et(θ), t = 1, . . . , T, (5)

where et(θ) denotes the error term. We say X ′β(θ) is a correct specification of µθ(X)

if there exists βo(θ) such that X ′βo(θ) = µθ(X) with probability one. Under correct

specification, we have yt = x′tβo(θ) + εt(θ).

In the dynamic context, to model the conditional expectile of yt, we consider the in-

formation set up to time t− 1: F t−1. It is natural to include lagged returns in xt, so as to

accommodate potential return correlation (dependence) over time. By the definition of ex-

pectile, it is also reasonable to expect that past positive return (y+
t−1 = max(yt−1, 0)) and

8



negative return (y−t−1 = max(−yt−1, 0)) exert different effects on conditional expectiles,

especially for tail expectiles. As such, we shall allow for asymmetric effects of return mag-

nitude on tail expectiles by including the magnitude (square or absolute value) of positive

and negative lagged returns in the model. Such asymmetry is in line with Black (1976)

and Christie (1982); Nelson (1991), Glosten, et al. (1993), and Engle and Ng (1993) also

allow for such effects in modeling conditional variance.

It is well known that yt−1 = y+
t−1 − y

−
t−1, |yt−1| = y+

t−1 + y−t−1, and y2
t−1 = (y+

t−1)2 +

(y−t−1)2. In the first CARE model specification, xt = (1, yt−1, (y
+
t−1)2, (y−t−1)2)′, so that (5)

reads:

yt = a0(θ) + a1(θ)yt−1 + b1(θ)y2
t−1 + c1(θ)(y−t−1)2 + et(θ)

= a0(θ) + a1(θ)yt−1 + b1(θ)(y+
t−1)2 + γ1(θ)(y−t−1)2 + et(θ),

(6)

where γ1(θ) = b1(θ) + c1(θ). The positive and negative parts of yt−1 would exert the

same magnitude effect on the θ-th conditional expectile when b1(θ) = γ1(θ) (or c1(θ) = 0).

The resulting conditional expectiles, however, may not be as smooth as the conditional

quantiles modeled using a CAViaR model, because the former are more sensitive to the

magnitude of past observations.4

Alternatively, we may use |yt−1| to represent the magnitude of yt−1. This leads to the

CARE specification with xt = (1, y+
t−1, y

−
t−1)′, so that (5) is

yt = a0(θ) + a1(θ)yt−1 + d1(θ)|yt−1|+ et(θ)

= a0(θ) + δ1(θ)y+
t−1 + λ1(θ)y−t−1 + et(θ),

(7)

with δ1(θ) = d1(θ) + a1(θ) and λ1(θ) = d1(θ) − a1(θ). Clearly, y+
t−1 and y−t−1 would not

have the same effect on the θ-th conditional expectile unless δ1(θ) = λ1(θ) (or a1(θ) = 0).

The right-hand side of (7) looks similar to the “asymmetric slope” specification of the

CAViaR model, yet it does not involve a lagged conditional expectile.

A natural extension of (6) is the following CARE model:

yt = a0(θ) + a1(θ)yt−1 + · · ·+ aq(θ)yt−q + b1(θ)(y+
t−1)2 + γ1(θ)(y−t−1)2 + · · ·

+ bq(θ)(y
+
t−q)

2 + γq(θ)(y
−
t−q)

2 + et(θ).
(8)

4From (6) we can see that x′tβ(θ) has an AR structure:

x′tβ(θ) = a0(θ) + a1(θ)
(
x′t−1β(θ)

)
+ b1(y+

t−1)2 + γ1(y−t−1)2 + a1et−1(θ),

which is similar to a CAViaR specification with possibly asymmetric magnitude effects. Yet, the magnitude

of lagged return and error also affect the behavior of conditional expectiles in our model.
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The positive and negative lagged returns would have the same magnitude effect if bi(θ) =

γi(θ), i = 1, . . . , q. An extension of (7) is the CARE model:

yt = a0(θ) + δ1(θ)y+
t−1 + λ1(θ)y−t−1 + · · ·+ δq(θ)y

+
t−q + λq(θ)y

−
t−q + et(θ), (9)

for which the positive and negative lagged returns would have the same magnitude effect

if δi(θ) = λi(θ), i = 1, . . . , q.

3.2 Model Estimation

The specification (5) can be estimated by the ALS method proposed by Newey and Pow-

ell (1987). Let β∗(θ) be the minimizer of the loss function: IE
[
ρθ(Y −X ′β(θ))

]
, so that

yt = x′tβ
∗(θ)+e∗t (θ). The ALS estimator for β∗(θ), denoted as β̂T (θ), can then be obtained

by minimizing the sample counterpart: T−1
∑T

t=1 ρθ(yt − x′tβ(θ)).

The first order condition of the ALS minimization problem is

1
T

T∑
t=1

|θ − 1{yt−x′tβ(θ)≤0}|xt(yt − x′tβ(θ)) =:
1
T

T∑
t=1

w(et(θ); θ)xtet(θ) = 0,

where w(et(θ); θ) = |θ − 1{et(θ)≤0}|. The ALS estimator β̂T (θ) thus satisfies:

β̂T (θ) =

(
T∑
t=1

w(êt(θ); θ)xtx
′
t

)−1( T∑
t=1

w(êt(θ); θ)xtyt

)
, (10)

where êt(θ) = yt−x′tβ̂T (θ). Although (10) is not a closed form solution, it can be computed

as an iterated weighted least squares estimator. For notation simplicity, we shall write

w∗t (θ) = w(e∗t (θ); θ) and ŵt(θ) = w(êt(θ); θ).

Newey and Powell (1987) establish consistency and asymptotic normality of the ALS es-

timator (10) under the condition that the data are i.i.d. Their results are readily extended

to allow for stationary and weakly dependent data under suitable regularity conditions.

These conditions are similar to those in Newey and Powell (1987) and are deferred to Ap-

pendix to reduce technicality. In what follows, we shall write IP−→ and D−→ for convergence

in probability and convergence in distribution, respectively. The consistency result follows

easily from Theorem 4.3 of Wooldridge (1994).

Theorem 3.1 Given [A1]–[A3] in Appendix, β̂T (θ) IP−→ β∗(θ) as T →∞.

The proof of the asymptotic normality of normalized β̂T (θ) is similar to that of Theorem 3

of Newey and Powell (1987), mutatis mutandis.
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Theorem 3.2 Given [A1]–[A3] in Appendix,

√
T
(
β̂T (θ)− β∗(θ)

) D−→ N
(
0, Σ(θ)

)
,

as T →∞, where Σ(θ) = Ξ(θ)−1V (θ)Ξ(θ)−1 with Ξ(θ) = IE[w∗t (θ)xtx′t],

V (θ) = lim
T→∞

V T (θ) := lim
T→∞

var

(
1√
T

T∑
t=1

w∗t (θ)xte
∗
t (θ)

)
,

and e∗t (θ) = yt − x′tβ∗(θ).

When (5) is correctly specified for the θ-th conditional expectile, we have β∗(θ) =

βo(θ), which also minimizes IE[ρθ(yt − x′tβ(θ)) | F t−1] (Newey and Powell, 1987, p. 824).

Thus, βo(θ) satisfies the first order condition:

IE
[
wot (θ)xtεt(θ) | F t−1

]
= xt IE

[
wot (θ)εt(θ) | F t−1

]
= 0;

where εt(θ) = yt−x′tβo(θ) and wot (θ) = w
(
εt(θ); θ

)
. Without loss of generality, xt contains

the constant one, so that the weighted errors, wot (θ)εt(θ), have the martingale difference

property:

IE
[
wot (θ)εt(θ) | F t−1

]
= 0. (11)

Clearly, (11) reduces to the conventional martingale difference condition for least-squares

errors when wot (θ) = 1/2 for all t. It follows that Theorem 3.2 holds as:

√
T
(
β̂T (θ)− βo(θ)

) D−→ N
(
0, Σ(θ)

)
,

where Σ(θ) = Ξ(θ)−1V (θ)Ξ(θ)−1 with V (θ) = var
(
wot (θ)xtεt(θ)

)
, by the martingale

difference property (11).

As in Newey and Powell (1987), the asymptotic covariance matrix Σ(θ) can be consis-

tently estimated by Σ̂T (θ) = Ξ̂T (θ)−1V̂ T (θ)Ξ̂T (θ)−1, where

Ξ̂T (θ) =
1
T

T∑
t=1

ŵt(θ)xtx
′
t

IP−→ Ξ(θ)

V̂ T (θ) =
1
T

T∑
t=1

ŵ2
t (θ)ê

2
t (θ)xtx

′
t

IP−→ V (θ) = var
(
wot (θ)xtεt(θ)

)
.

It can be shown that the proof in Newey and Powell (1987) in fact carries over under

stationarity and the martingale difference property (11); we omit the details.
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3.3 Model Specification Test

In section 3.1, there are two CARE specifications, (8) and (9), for tail conditional ex-

pectiles. To determine an appropriate model, we construct an encompassing test of the

following null model:

H0 : x′tβo(θ) = µθ(F t−1), with probability one,

against the alternative:

H1 : ζ′tγo(θ) = µθ(F t−1), with probability one,

where xt (k× 1) and ζt (m× 1) are in F t−1 and contain different elements, and µθ(F t−1)

denotes the θ-th conditional expectile function, given the information of F t−1. For exam-

ple, xt includes the constant one, yt−i, (y+
t−i)

2, and (y−t−i)
2, i = 1, . . . , q, when (8) is the

null model, whereas ζt includes the constant one, y+
t−i, and y−t−i, i = 1, . . . , q, when (9) is

the alternative model.

In view of (11), we may test the null hypothesis by checking if the weighted errors of

the null model are uncorrelated with the variables in the alternative model:

IE
[
ζtw

o
t (θ)εt(θ)

]
= 0. (12)

We can then base a test of (12) on:

1√
T

T∑
t=1

ζtŵt(θ)êt(θ)

=
1√
T

T∑
t=1

ζtŵt(θ)εt(θ)−
1
T

T∑
t=1

ŵt(θ)ζtx
′
t

√
T
(
β̂T (θ)− βo(θ)

)
=

1√
T

T∑
t=1

ζtŵt(θ)εt(θ)

−

(
1
T

T∑
t=1

ŵt(θ)ζtx
′
t

)(
1
T

T∑
t=1

ŵt(θ)xtx
′
t

)−1
1√
T

T∑
t=1

ŵt(θ)xtεt(θ).

By (A.24) of Newey and Powell (1987),∣∣∣∣∣ 1
T

T∑
t=1

ŵt(θ)xtx
′
t −

1
T

T∑
t=1

wot (θ)xtx
′
t

∣∣∣∣∣ IP−→ 0,

where |A| denotes the maximum norm of the matrix A. Similarly,∣∣∣∣∣ 1
T

T∑
t=1

ŵt(θ)ζtx
′
t −

1
T

T∑
t=1

wot (θ)ζtx
′
t

∣∣∣∣∣ IP−→ 0,

12



A suitable law of large numbers ensure that T−1
∑T

t=1w
o
t (θ)xtx′t

IP−→ Ξ(θ) and

1
T

T∑
t=1

wot (θ)ζtx
′
t

IP−→ IE[wot (θ)ζtx
′
t] =: Γ(θ).

It follows that

1√
T

T∑
t=1

ŵt(θ)ζtêt(θ) =
1√
T

T∑
t=1

(
ζt − Γ(θ)Ξ(θ)−1xt

)
ŵt(θ)εt(θ) + oIP(1). (13)

This is the basis of the proposed non-nested test.

Recall that

√
T
(
β̂T (θ)− β∗(θ)

)
= −Ξ(θ)−1

(
1√
T

T∑
t=1

ŵt(θ)xte
∗
t (θ)

)
+ op(1).

In view of the proof of Theorem 3.2, we conclude that T−1/2
∑T

t=1 ŵt(θ)xte
∗
t (θ) is asymp-

totically equivalent to T−1/2
∑T

t=1w
∗
t (θ)xte∗t (θ) which is asymptotically normally dis-

tributed. A similar conclusion also holds for T−1/2
∑T

t=1 ŵt(θ)ζte
∗
t (θ). Under the null

hypothesis, e∗t (θ) = εt(θ), and (13) is such that

1√
T

T∑
t=1

ŵt(θ)ζtêt(θ) =
1√
T

T∑
t=1

(
ζt − Γ(θ)Ξ(θ)−1xt

)
wot (θ)εt(θ) + oIP(1)

D−→ N (0, Ω(θ)),

(14)

where Ω(θ) = IE
[
wot (θ)2ε2t (θ)

(
ζt−Γ(θ)Ξ(θ)−1xt

)(
ζt−Γ(θ)Ξ(θ)−1xt

)′] by the martingale

difference property (11). Note that Ω has rank q ≤ m, where m is the dimension of ζt.

For example, q may be the number of elements in ζt that are not included in xt.

It follows from (14) that the proposed test statistic is:

1
T

(
T∑
t=1

ŵt(θ)ζtêt(θ)

)(
Ω̂(θ)−

)( T∑
t=1

ŵt(θ)ζtêt(θ)

)′
D−→ χ2(q), (15)

where Ω̂(θ)− is the generalized inverse of the consistent estimator, Ω̂(θ), for Ω(θ). This is a

conditional expectile encompassing test, analogous to the conditional mean encompassing

test of Wooldrdige (1990). Note that a consistent estimator of Ω(θ) is

Ω̂T (θ) =
1
T

T∑
t=1

ŵ2
t (θ)ê

2
t

ζt −
(

1
T

T∑
t=1

ŵt(θ)ζtx
′
t

)(
1
T

T∑
t=1

ŵt(θ)xtx
′
t

)−1

xt


ζt −

(
1
T

T∑
t=1

ŵt(θ)ζtx
′
t

)(
1
T

T∑
t=1

ŵt(θ)xtx
′
t

)−1

xt

′ .
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Table 2: Summary statistics of returns from stock market indices.

Index Mean Median Max Min S. Dev. Skew. Kurt.

S&P500 0.0127 0.0168 2.4204 −3.089 0.541 −0.091 5.424

NASDAQ 0.0139 0.0649 5.7564 −4.416 0.862 0.028 6.046

Ω(θ) may also be estimated using a suitable bootstrap method.

Remark: Let ζ̃t denote the sub-vector of ζt that is not in the linear space spanned by

the variables in xt. Then, the encompassing test (15) may be computed as

1
T

(
T∑
t=1

ŵt(θ)ζ̃têt(θ)

)(
Ω̃T (θ)−1

)( T∑
t=1

ŵt(θ)ζ̃têt(θ)

)′
D−→ χ2(q),

where Ω̃T (θ) has rank q and is computed as Ω̂(θ), with ζt replaced by ζ̃t.

4 Empirical Study

To illustrate the proposed CARE model, we conduct a simple empirical study to assess the

value at risk of some stock indices. For each index, we shall select an appropriate CARE

model specification and then evaluate both in-sample and out-of-sample performance of

the selected model.

4.1 Data and Computation

We consider two stock indices, S&P500 and NASDAQ. The daily data of these indices

are taken from Datastream; the sample period is from Jan 02, 1996 to Dec. 31, 2003 with

2015 observations. We choose the sample period in which these indices are relatively more

volatile because such data help to illustrate the usefulness of EVaR.

We will estimate EVaR of daily returns which are computed as 100 times the first

difference of the log transformation of the index.5 Table 2 collects the summary statistics

of these daily returns. We find that both returns have mean close to zero and standard

deviations less than one. Also, they are slightly skewed and have excess kurtosis. In par-

ticular, NASDAQ has a wider range (longer tails) and also a larger standard deviation and
5In terms of dollar amount, the θ-th EVaR is computed as Vt · |ν(θ)|, where Vt denotes the dollar value

of a portfolio at time t, and ν(θ) is the θ-th expectile estimated from returns.
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Figure 3: Kernel densities of stock index returns

a larger kurtosis coefficient. This can also be seen from its histogram and estimated den-

sity in Figure 3, where the densities are computed by STATA based on the Epanechnikov

kernel. The return series plotted in Figure 4 also reveal that large values of NASDAQ

index return mainly occur during 1999–2001, the period of dot-com bubble.

In our empirical analysis, the first 1515 observations from 1996 to 2002 are used for

model estimation and the remaining 500 observations are reserved for the out-of-sample

evaluation. As far as model estimation is concerned, we follow Newey and Powell (1987)

and adopt the iterated weighted least squares (IWLS) algorithm. For each model, we

use the OLS estimates as the initial values for the IWLS estimates and iterate till the

estimates converge (the convergence criterion is 10−12). The estimation program is coded

in GAUSS.

4.2 Empirical Results

For the empirical study, we consider two class of CARE models discussed in Section 3.1.

The first class is a simpler form of model (8):

yt = a0(θ) + a1(θ)yt−1 + b1(θ)(y+
t−1)2 + γ1(θ)(y−t−1)2 + · · ·

+ bq(θ)(y
+
t−q)

2 + γq(θ)(y
−
t−q)

2 + et(θ),

where yt−1 is admitted, but higher order lags enter the model only in terms of their

squares. This will be referred to as an SQ(q) model. We do not include other yt−i, i ≥ 2,

in SQ models because they are typically insignificant and their presence may affect the
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Figure 4: Stock return series: 1996–2003

significance of other parameter estimates. The second class is model (9):

yt = a0(θ) + δ1(θ)y+
t−1 + λ1(θ)y−t−1 + · · ·+ δq(θ)y

+
t−q + λq(θ)y

−
t−q + et(θ),

which will be referred to as an ABS(q) model.

We first determine the number of lags in each class of models. To this end, we esti-

mate each model with q = 5 and test the significance of parameter estimates. When the

estimates of b5 and γ5 in the SQ(5) model (or δ5 and λ5 in the ABS(5) model) are both

insignificant, we drop the lag-5 variables and re-estimate the SQ(4) (or ABS(4)) model.

Otherwise, we keep the SQ(5) (or ABS(5)) model. Note that, for a given lag, the positive

and negative parts of the lagged variable are both kept in the model as long as at least one

of their parameter estimates is significant. This allows us to examine whether the positive

and negative parts exert asymmetry effects on conditional expectiles. We repeat this pro-

cess and check whether the SQ(4) (or ABS(4)) model should be kept, and so on. After the

final SQ and ABS models are chosen, we test one against another by the encompassing

test introduced in Section 3.3.

For θ = 0.05, our estimation and significance test (at 5% level) results lead to SQ(3) and

ABS(2) models for S&P500 and SQ(3) and ABS(5) models for NASDAQ. For S&P500, the

encompassing test of SQ(3) against ABS(2) yields a statistic of 2.23 with p-value 69.38%,

and the test statistic of ABS(2) against SQ(3) is 15.23 with p-value 1.8%. Hence, we

reject ABS(2) model at 5% level but do not reject SQ(3) model at the same level. For

NASDAQ, the encompassing test statistic of SQ(3) against ABS(5) is 27.74 with p-value

16



Table 3: The parameter estimates of the selected CARE models: θ = 0.05.

S&P500: SQ(3) NASDAQ: ABS(5)

Variable Estimate (s.e.) Variable Estimate (s.e.)

cons. −1.066 (0.054)∗∗∗ cons. −0.599 (0.071)∗∗∗

yt−1 0.445 (0.010)∗∗∗ y+
t−1 −0.000 (0.061)

(y+
t−1)2 −0.138 (0.038)∗∗∗ y−t−1 −0.247 (0.095)∗∗∗

(y−t−1)2 0.148 (0.049)∗∗∗ y+
t−2 −0.174 (0.061)∗∗∗

(y+
t−2)2 −0.003 (0.021) y−t−2 −0.381 (0.088)∗∗∗

(y−t−2)2 −0.131 (0.068)∗ y+
t−3 −0.093 (0.068)

(y+
t−3)2 −0.022 (0.036) y−t−3 −0.148 (0.076)∗

(y−t−3)2 −0.038 (0.023)∗ y+
t−4 −0.193 (0.077)∗∗∗

y−t−4 −0.193 (0.084)∗∗∗

y+
t−5 −0.167 (0.096)∗

y−t−5 −0.146 (0.087)∗

in-sample tail prob.: 10.74% in-sample tail prob.: 12.1%

out-of-sample tail prob.: 7.1% out-of-sample tail prob.: 7.14%

out-of-sample θ: 3.0% out-of-sample θ: 2.4%

Note: ∗, ∗∗ and ∗ ∗ ∗ label significance at 10%, 5% and 1% levels, respectively.

less than 0.2%, and the statistic of ABS(5) against SQ(3) is 8.24 with p-value 22.09%.

These indicate that SQ(3) model is rejected at a very small significance level and that

ABS(5) model can not be rejected at 10% level. Thus, the final models for S&P500 and

NASDAQ are SQ(3) and ABS(5), respectively; their parameter estimates are summarized

in Table 3.

For S&P500, it can be seen that the effects of (y+
t−1)2 and (y−t−1)2 in the SQ(3) model

have opposite signs and very significant, but the effects of (y+
t−i)

2 and (y−t−i)
2 have the

same (negative) sign for i ≥ 2 and less significant. Apart from the sign, we find that

the effects of (y+
t−i)

2 and (y−t−i)
2 are significantly different at 5% level only for i = 2. For

NASDAQ, all coefficient estimates in the ABS(5) model have negative sign, and the effects

of y−t−1, y+
t−2, y−t−2, y+

t−4, and y−t−4 are highly significant. Yet, the effects of the positive

and negative parts of a particular lag are not significantly different in general, except that

the effects of y+
t−2 and y−t−2 are different marginally (significant at 10% level).

We also calculate the in-sample tail probability for the estimated expectile, i.e., the
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percentage that yt falls below the estimated conditional expectiles. These probabilities for

S&P500 and NASDAQ are 10.74% and 12.1%, respectively. This suggests that, when the

index of prudentiality θ = 5% is our concern, the QVaR at 5% level would be too conser-

vative. In the light of Table 1, we may infer that the tail of the conditional distribution

for S&P500 is close to that of t(5) and the tail for NASDAQ is close to that of t(20). Note

that the out-of-sample tail probabilities for both indices are smaller than their in-sample

counterparts: 7.1% for S&P500 and 7.14% for NASDAQ. This may be explained by the

fact that both indices are less volatile in the out-of-sample period, as can be seen from

Figure 4. The out-of-sample θ’s (3.0% for S&P500 and 2.4% for NASDAQ) are smaller

than but not far from the pre-set 5% level.

To see the potential difference in the dynamic patterns in tail behaviors, we re-estimate

CARE models for the deeper left tail with θ = 0.01 and evaluate their performance. In this

case, the final models for S&P500 and NASDAQ are SQ(2) and ABS(5), respectively.6 The

dynamic structures of these models are similar to those under θ = 0.05. The parameter

estimates of the final models are summarized in Table 4. From the estimation results, we

find asymmetric impacts of (y+
t−2)2 and (y−t−2)2 in the SQ(2) model for S&P500. In the

ABS(5) model for NASDAQ, there are asymmetric impacts of y+
t−2 and y−t−2; in addition,

the conditional expectile responds differently to y+
t−1 and y−t−1 in both the direction and

magnitude. Also note that most coefficient estimates associated with the negative part

are significantly negative, showing that recent past downturns of the market index tend

to suggest a higher downside risk and push the conditional expectile further downward.

A similar conclusion can also be drawn for the results in Table 3.

From the in-sample tail probabilities in Table 4 we see that the tail of S&P500 is close to

that of t(10) and the tail of NASDAQ is close to that of the standard normal distribution.

These tail behaviors are slightly different from those revealed under θ = 0.05. The tail

probabilities show that when the EVaR with θ = 0.01 is of primary concern, the QVaR at

5% level would be too small for the potential risk. The out-of-sample θs (0.8% for S&P500

and 0.3% for NASDAQ) and the ratio of the in-sample tail probability to the out-of-sample

tail probability together indicate that the CARE models may better describe the evolution
6By the same model selection procedure, we obtained SQ(2) and ABS(2) models for S&P500 and SQ(5)

and ABS(5) models for NASDAQ. For S&P500, the encompassing test rejects ABS(2) at 10% level (statistic

8.51 with p-value 7.5%); the test of SQ(2) against ABS(2) can not reject SQ(2) (statistic 4.57 with p-value

33.5%). For NASDAQ, the encompassing test rejects SQ(5) (statistic 33.87 with p-value= 0.2%) and does

not reject ABS(5) (statistic 13.77 with p-value= 18.4%).
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Table 4: The parameter estimates of the selected CARE models: θ = 0.01.

S&P500: SQ(2) NASDAQ: ABS(5)

Variable Estimate (s.e.) Variable Estimate (s.e.)

cons. −1.717 (0.083)∗∗∗ cons. −0.873 (0.108)∗∗∗

yt−1 0.614 (0.165)∗∗∗ y+
t−1 0.024 (0.064)

(y+
t−1)2 −0.181 (0.050)∗∗∗ y−t−1 −0.336 (0.099)∗∗∗

(y−t−1)2 0.169 (0.083)∗∗ y+
t−2 −0.099 (0.075)

(y+
t−2)2 0.013 (0.018) y−t−2 −0.497 (0.088)∗∗∗

(y−t−2)2 −0.249 (0.071)∗∗∗ y+
t−3 −0.047 (0.097)

y−t−3 −0.238 (0.141)∗

y+
t−4 −0.297 (0.090)∗∗∗

y−t−4 −0.196 (0.087)∗∗

y+
t−5 −0.249 (0.107)∗∗

y−t−5 −0.294 (0.096)∗∗∗

in-sample tail prob.: 3.7% in-sample tail prob.: 4.3%

out-of-sample tail prob.: 2.38% out-of-sample tail prob.: 2.77%

out-of-sample θ: 0.8% out-of-sample θ: 0.3%

Note: ∗, ∗∗ and ∗ ∗ ∗ label significance at 10%, 5% and 1% levels, respectively.

of the very left tail of these conditional distributions.

Our results show that the risk revealed by the estimated EVaR is different from that de-

termined by a conventional QVaR. Moreover, the CARE model specification may vary with

θ because the dynamics is not necessarily the same at different locations of the conditional

distribution. Thus, the proposed modeling approach is quite flexible in characterizing the

tail behaviors of a variable.

5 Concluding Remarks

In this paper we propose an expectile-based downside risk measure, EVaR, that is more

sensitive to the magnitude of extreme losses than conventional QVaR. To implement this

measure, we construct various CARE models for EVaR and discuss model estimation and

specification test. These together constitute an alternative to the existing methods for

assessing downside risk, such as the CAViaR model for QVaR. It has been shown that

the EVaR with a given index of prudentiality may be viewed as a flexible QVaR, in the
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sense that its tail probability is not set a priori but is determined by the underlying

distribution. As such, the EVaR measure would be useful if we can find a proper criterion

to determine its index of prudentiality in practice. This criterion must be so intuitive that

the regulators and management can easily relate the index of prudentiality to the risk in

the usual sense. Moreover, our approach may be further improved by finding other CARE

model specifications that can better characterize the dynamic behavior of tail expectiles.

These topics are not fully addressed in this paper and are currently being investigated.
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Appendix

Regularity Conditions:

[A1] zt = (yt,x′t)′ is strictly stationary and ergodic and has the probability density func-

tion f(zt) = g(yt|xt)h(xt) with respect to the measure νz = η × νx, where f(zt) is

continuous in yt for almost all xt, and η denotes the Lebesque measure on the real

line. Also, IE(xtx′t) is of full rank k.

[A2] There is δ > 0 such that
∫
|z|4+δf(y|x)h(x)dνz <∞.

[A3] β(θ) ∈ B ⊆ Rk, where B is compact.

[A4] There is a positive K such that V T = var
(
T−1/2

∑T
t=1w

∗
t (θ)xte∗t (θ)

)
≤ K, where

e∗t (θ) = yt − x′tβ∗(θ).

Proof of Theorem 3.1: We verify the conditions M.1–M.3 imposed in Theorem 4.3

of Wooldridge (1994) for ρθ(yt − x′tβ(θ)). First, it is easy to see that M.1 holds under

[A1] and [A3]. For M.2, we must show that ρθ(yt − x′tβ(θ)) obeys a weak uniform law of

large numbers. In the light of Theorem 4.1 of Wooldridge (1994), it remains to show that

ρθ(yt−x′tβ(θ)) is dominated by an integrable function for all β(θ) ∈ B. To this end, note

that there exist constants d1, d2,M > 0,

|ρτ (yt − x′tβ(θ))| ≤ |zt|2(d1 + d2|β(θ)|2) ≤ |zt|2M,

where the last inequality follows because B is compact. The right-hand side is clearly

integrable by [A2] and does not depend on β(θ), so that M.2 holds. Note that by strict

stationarity of zt and an argument similar to that of Theorem 3 in Newey and Pow-

ell (1987), there exists a unique minimizer, β∗(θ), of IE[ρθ(yt − x′tβ(θ))], as required by

M.3. The assertion follows from Theorem 4.3 of Wooldridge (1994). 2

Proof of Theorem 3.2: The proof is similar to that for Theorem 3 of Newey and

Powell (1987). When the order of expectation and differentiation can be exchanged, let

λθ(β(θ)) := ∇β IE
[
ρθ(yt − x′tβ(θ))

]
/2 = − IE

[
w(et(θ); θ)xtet(θ)

]
,

∇βλθ(β(θ)) = IE[w(et(θ); θ)xtx
′
t].

Clearly, λθ(β
∗(θ)) = 0. It can be verified that conditions [A1]–[A3] are sufficient for (N-

1)–(N-3) of Huber (1967) and hence Lemma 3 of Huber (1967). Note that Huber’s proof
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requires only the first order Chebyshev’s inequality and hence is not affected by weak

dependence of the data imposed in [A1]. Lemma 3 of Huber (1967) and [A4] together

imply:

√
Tλθ(β̂T (θ)) +

1√
T

T∑
t=1

w∗t (θ)xte
∗
t (θ) = oIP(1).

The proof of this result requires the second order Chebyshev’s inequality. Hence, the uni-

form boundedness of V T (θ) imposed in [A4] is needed; see also Theorem 3 of Huber (1967).

By mean value expansion of λθ(β̂T (θ)) around β∗(θ),

√
Tλθ(β̂T (θ)) = − 1√

T

T∑
t=1

w∗t (θ)xte
∗
t (θ)

= ∇βλθ(β̈T (θ))
√
T
(
β̂T (θ)− β∗(θ)

)
+ op(1),

where β̈T (θ) denotes the mean value. Hence,

√
T
(
β̂T (θ)− β∗(θ)

)
= −

(
∇βλθ(β̈T (θ))

)−1 1√
T

T∑
t=1

w∗t (θ)xte
∗
t (θ) + oIP(1).

The consistency of β̂T (θ) implies that β̈T (θ)) also converges to β∗(θ). By the continuity

of ∇βλθ(β(θ)), we have ∇βλθ(β̈T (θ)) IP−→ Ξ(θ). It follows that

√
T
(
β̂T (θ)− β∗(θ)

)
= −Ξ(θ)−1 1√

T

T∑
t=1

w∗t (θ)xte
∗
t (θ) + oIP(1).

By [A1] and [A2], a central limit theorem for stationary sequence yields:

1√
T

T∑
t=1

w∗t (θ)xte
∗
t (θ)

D−→ N (0, V (θ)).

These results together ensure the desired conclusion. 2
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