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1 Introduction

Many countries have adopted monetary and fiscal policy arrangements that erect firm walls

between the two policy authorities. There are good practical reasons for this separation:

historically, high- or hyperinflation episodes have sprung from governments pressuring central

banks to finance spending by printing high-powered money. Economic theory does not

uniformly support the complete separation. If inflation is costless, as in neoclassical models

with flexible wages and prices, then Chari and Kehoe (1999) show that an optimal policy

generates jumps in inflation that revalue nominal government debt without requiring changes

in distorting tax rates, much as inflation behaves under the fiscal theory of the price level

[Leeper (1991), Sims (1994), Woodford (1995)].

Schmitt-Grohé and Uribe (2004) and Siu (2004) overturn this role for inflation with

the striking result that even a modicum of price stickiness makes the optimal volatility of

inflation close to zero, an outcome later confirmed by Kirsanova and Wren-Lewis (2012),

among others. Out of this optimal policy literature has emerged the “current consensus

assignment” for monetary and fiscal policy, which Kirsanova et al. (2009) articulate: give

monetary policy the task of controlling demand and inflation and fiscal policy the job of

stabilizing debt. Actual policy arrangements in most countries are consistent with this

literature’s conclusions.

Sims (2001, 2013) questions whether the consensus assignment is robust when govern-

ments issue long-term nominal bonds. He lays out a theoretical argument for using nominal

debt—and surprise revaluations of that debt—as a cushion against fiscal shocks to substitute

for large movements in distorting taxes. Turning to data, Sims calculates that in the United

States surprise gains and losses on debt due to inflation are on the order of 6 percent of the

value of outstanding debt, roughly the magnitude of fluctuations in primary surpluses. Sims

(2013) stops short of claiming that the significant responses of inflation to fiscal disturbances,

which long debt permits, is optimal policy.

This paper explores that claim. In particular, we extend Sims’s reasoning to the canonical

new Keynesian model that Benigno and Woodford (2004, 2007) examine. The steady state

is distorted by monopolistically competitive firms and nominal rigidities prevent firms from

choosing new prices each period. A distorting tax is levied against firms’ sales. Total fac-

tor productivity, wage markups, government purchases of goods, and lump-sum government

transfers fluctuate exogenously. Government issues nominal debt whose average duration is

indexed by a single parameter. Monetary and tax policies are chosen optimally to maximize

welfare of the representative household. Optimal policies and the nature of resulting equilib-
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ria depend on both the maturity structure and the level of government debt.1 We contrast

welfare in this model to an alternative setup in which monetary policy is optimal, lump-sum

taxes may be adjusted to ensure the government’s solvency condition never binds, but the

distorting tax rate varies exogenously.

In the presence of distorting taxes, nominal rigidities, and long-term nominal government

debt, we show that policy faces a fundamental conflict: stabilize inflation and allow output

to fluctuate to accommodate fiscal needs versus stabilize output and use inflation to revalue

debt to ensure government solvency. This conflict means that the first-best outcome—

inflation and the output gap are perfectly smoothed and stabilized—is generally inconsistent

with government solvency, so it is unattainable. The core of our analysis focuses on how

the average maturity of government nominal bond affects the optimal equilibrium and the

consequent distribution between inflation stabilization and output stabilization.

Two equations summarize equilibria under optimal monetary and fiscal policies. Let ρ

index the average debt duration of the government’s bond portfolio, where ρ = 0 makes all

debt one-period and ρ = 1 makes all debt consols. Equilibrium k-step-ahead expectations

of inflation, π̂, and the output gap, x̂, the two arguments of the government’s loss function,

are

Etπ̂t+k = ρkπ̂t + ρkαπ(L
b
t − Lbt−1)

Etx̂t+k = ρkx̂t + (1− ρk)αxL
b
t

where Lbt is the Lagrange multiplier associated with government solvency and απ and αx are

positive and functions of deep parameters.

These equilibrium expressions neatly encapsulate the policy problem. The first terms on

the right stem from the welfare improvements that arise from smoothing. That both terms

involve ρk means that longer maturity debt helps to smooth both inflation and output. The

second terms bring in the government solvency dimension of optimal policy through the

Lagrange multipliers. Now maturity has opposite effects on the two variables. As maturity

extends, changes in the state of government solvency are permitted to affect future inflation

more strongly, whereas the output gap becomes less responsive.

One-period debt, ρ = 0, underlies the work behind the consensus assignment. Optimal

policy makes the price level a martingale—perfectly smoothes it—and forces the output gap

to absorb disturbances. Following a disturbance at t, the price level is expected to remain

unchanged (expected inflation is zero), while the output gap is expected to move to a new

1In a learning environment, Eusepi and Preston (2012) find that maturity structure and level of govern-
ment debt have important consequences for stability.
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level permanently. When nominal government bonds are perpetuities, optimal outcomes

are starkly different. The output gap is a martingale and inflation adjusts permanently to

exogenous shocks.

Intermediate maturities bring out the tradeoff between the smoothing and solvency as-

pects of optimal policy because both are operative. We explore this tradeoff in a variety of

ways below. For any maturities short of perpetuities, 0 ≤ ρ < 1, as the forecast horizon

extends, k → ∞, expected inflation converges to zero whereas the expected output gap

converges to αxL
b
t . In these cases, inflation is well anchored on zero, but the output gap’s

“anchor” varies with the state at t.

Key findings include: (1) there is always a role for current and future inflation innovations

to revalue government debt, reducing reliance on distorting taxes; (2) the role of inflation

in optimal fiscal financing increases with the average maturity of government debt; (3)

as average maturity rises, it is optimal to tradeoff inflation for output stabilization; (4)

inflation is relatively more important as a fiscal shock absorber in high-debt than in low-

debt economies; (5) in some calibrations that are relevant to U.S. data, welfare under the

fully optimal monetary and fiscal policies can be made equivalent to the welfare under the

conventional optimal monetary policy with passively adjusting lump-sum taxes by extending

the average maturity of bond.

Our analysis is built on two strands of literature. First, following the neoclassical lit-

erature on optimal taxation, when the government can only access to distortionary taxes,

variations in tax rates generate dead-weight losses [Barro (1979)]. Maximization of welfare

calls for smoothing tax rates and relying on the variations in real value of government debt

to hedge against a fiscal shock. This is possible only when (i) the government can issue

state-contingent bonds [Lucas and Stokey (1983), Chari et al. (1994)], or (ii) the government

issues nominal bonds, but unexpected variations in inflation replicate state-contingent bonds

[Bohn (1990) and Chari and Kehoe (1999)]. However, this work abstracts from monetary

considerations by assuming flexible prices.

Another strand, the new Keynesian literature on optimal monetary policy, emphasizes

that when prices are sticky, variation in aggregate price levels creates price dispersion that

is an important source of welfare loss. A benevolent government minimizes price volatility.

However, this strand tends to abstract from fiscal considerations by assuming non-distorting

sources of revenue that maintain government solvency [Clarida et al. (1999a) and Woodford

(2003)].

Our paper contributes to the literature by bringing the role of long-term nominal bond

into the joint determination of monetary and fiscal policy. In particular, we are the first to

consider how the long-term nominal bond affects optimal policy mix in a setting where price
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stability and fiscal financing smoothness are both in effect. We extend Sims (2013) which

only considers ad hoc welfare functions and the extreme case of consol debt. This rich setting

allows us to derive several novel findings. Specifically, we show that allowing adjustments in

current & future price levels to revalue debt is generally part of an optimal policy and the

role of inflation as a fiscal cushion increases with average maturity of debt. This finding has

practical implications given the current fiscal and monetary situation.

We also connect to studies that focus on long-term bonds. Angeletos (2002) and Buera

and Nicolini (2004) examine the optimal maturity structure of public debt to find that

state-contingent debt can be constructed by non-contingent debt with different maturities.

However, they consider only the case where prices are perfectly flexible and the government

issues real debt. Therefore, they abstract from the monetary considerations. Woodford

(1998), Cochrane (2001) and Sims (2001, 2013) study nominal government debt to argue

that when outstanding government debt has long maturity, the government could finance

higher government spending with a little bit of inflation spread over the maturity of the debt,

effectively converting nominal debt into state-contingent real debt, as in Lucas and Stokey

(1983). Both Cochrane and Sims employ ad hoc welfare functions to illustrate their points, so

neither argues that revaluation of debt through inflation is a feature of a fully optimal policy.

More importantly, they both consider a constant or exogenous real interest rate, downplaying

the effects on real allocations of monetary and fiscal policies. Our contribution is to shed

further light on the effect of long-term bond, first, by showing that as average maturity rises,

it is optimal to tradeoff inflation for output stabilization; second, by showing the role of

long-term bond in output smoothing and third, by studying the welfare equivalence between

joint optimal policies and the conventional optimal monetary policy with passively adjusting

lump-sum taxes.

The paper is organized as follows. Section 2 introduces the model. Section 3 develops

the purely quadratic loss function and the linear constraints that prevent simultaneous sta-

bilization of inflation and output. Section 4 studies optimal equilibrium under flexible price

as a baseline. Section 5 characterizes the optimal equilibrium condition and joint optimal

policy mix under sticky price. Section 6 outlines our calibration. Section 7 discusses three

channels through which the average maturity of government debt affects optimal allocation.

Section 8 studies how long-term bond affects the trade-off between inflation and output gap

and the welfare. Section 9 studies the effect of different debt levels. Section 10 contrasts our

result with the conventional optimal monetary policy. Section 11 concludes.
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2 Model

We employ a standard new Keynesian economy that consists of a representative household

with an infinite planning horizon, a collection of monopolistically competitive firms that

produce differentiated goods, and a government. A fiscal authority finances exogenous ex-

penditures with distorting taxes and debt and a monetary authority sets the short-term

nominal interest rate.

2.1 Households The economy is populated by a continuum of identical households. Each

household has preferences defined over consumption, Ct, and hours worked, Njt. Preferences

are

E0

∞∑
t=0

βtU(Ct, Njt) = E0

∞∑
t=0

βt

[
C1−σ
t

1− σ
−
∫ 1

0

N1+φ
jt

1 + φ
dj

]

where σ−1 parameterizes the intertemporal elasticity of substitution, and φ−1 parametrizes

the Frisch elasticity of labor supply.

Consumption is a CES aggregator defined over a basket of goods of measure one and

indexed by j

Ct =

[∫ 1

0

C
ϵ−1
ϵ

jt dj

] ϵ
ϵ−1

where Cjt represents the quantity of good j consumed by the household in period t. The

parameter ϵ > 1 denotes the intratemporal elasticity of substitution across different varieties

of consumption goods.2 Each good j is produced using a type of labor that is specific to

that industry, and Njt denotes the quantity of labor supply of type j in period t. The

representative household supplies all types of labor.

The aggregate price index Pt is

Pt =

[∫ 1

0

P 1−ϵ
jt dj

] 1
1−ϵ

where Pjt is the nominal price of the final goods produced in industry j.

Households maximize expected utility subject to the budget constraint

Ct +QS
t

BS
t

Pt
+QM

t

BM
t

Pt
=
BS
t−1

Pt
+ (1 + ρQM

t )
BM
t−1

Pt
+

∫ 1

0

(
Wjt

Pt
Njt +Πjt

)
dj + Zt

2 When ϵ → ∞, goods become perfect substitutes; when ϵ → 1, goods are neither substitutes nor
complements: an increase in the price of one good has no effect on demand for other goods.
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where Wjt is the nominal wage rate in industry j, Πjt is the share of profits paid by the

jth industry to the households, and Zt is lump-sum government transfer payments. BS
t

is a one-period government bond with nominal price QS
t ; B

M
t is a long-term government

bond portfolio with price QM
t . The long-term bond portfolio is defined as perpetuities with

coupons that decay exponentially, as in Woodford (2001). A bond issued at date t pays ρk−1

dollars at date t + k, for k ≥ 1 and ρ ∈ [0, 1] is the coupon decay factor that parameterizes

the average maturity of the bond portfolio. A consol is the special case when ρ = 1 and

one-period bonds arise when ρ = 0. The duration of the long-term bond portfolio BM
t is

(1− βρ)−1.

Household optimization yields the first-order conditions

Wjt

Pt
= −µWt

Unj ,t

Uc,t
(1)

QS
t = βEt

Uc,t+1

Uc,t

Pt
Pt+1

(2)

QM
t = βEt

Uc,t+1

Uc,t

Pt
Pt+1

(1 + ρQM
t+1) (3)

where µWt is an exogenous wage markup factor.3 Combining (2) and (3) yields the no-

arbitrage condition between one-period and long-term bonds

QM
t = EtQ

S
t (1 + ρQM

t+1) (4)

2.2 Firms A continuum of monopolistically competitive firms produce differentiated goods.

Production of good j is given by

Yjt = AtNjt

where At is an exogenous aggregate technology shock, common across firms. Firm j faces

the demand schedule

Yjt =

(
Pjt
Pt

)−ϵ

Yt

With demand imperfectly price-elastic, each firm has some market power, leading to the

monopolistic competition distortion in the economy.

Another distortion stems from nominal rigidities. Prices are staggered, as in Calvo (1983),

3We follow Benigno and Woodford (2007) to include the time-varying exogenous wage markup in order
to include a “pure” cost-push effect.
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with a fraction 1 − θ of firms permitted to choose a new price, P ∗
t , each period, while the

remaining firms cannot adjust their prices. This pricing behavior implies the aggregate price

index

Pt = [(1− θ)(P ∗
t )

1−ϵ + θ(Pt−1)
1−ϵ]

1
1−ϵ (5)

Firms that can reset their price choose P ∗
t to maximize the expected sum of discounted

future profits by solving

maxEt

∞∑
k=0

θkQt,t+k[(1− τt+k)P
∗
t Yt+k|t −Ψt+k(Yt+k|t)]

subject to the demand schedule

Yt+k|t =

(
P ∗
t

Pt+k

)−ϵ

Yt+k

where Qt,t+k is the stochastic discount factor for the price at t of one unit of composite

consumption goods at t + k, defined by Qt,t+k = βk
Uc,t+k

Uc,t

Pt

Pt+k
. Sales revenues are taxed at

rate τt, Ψt is cost function, and Yt+k|t is output in period t + k for a firm that last reset its

price in period t.

The first-order condition for this maximization problem implies that the newly chosen

price in period t, P ∗
t , satisfies(

P ∗
t

Pt

)1+ϵφ

=
ϵ

ϵ− 1

Et
∑∞

k=0(βθ)
kµWt+k(

Yt+k

At+k
)φ+1(Pt+k

Pt
)ϵ(1+φ)

Et
∑∞

i=0(βθ)
k(1− τt+k)Uc,t+kYt+k(

Pt+k

Pt
)ϵ−1

=
ϵ

ϵ− 1

Kt

Jt
(6)

where Kt and Jt are aggregate variables that satisfy the recursive relations

Kt = µWt

(
Yt
At

)φ+1

+ βθEtKt+1π
ϵ(1+φ)
t+1 (7)

Jt = (1− τt)Uc,tYt + βθEtJt+1π
ϵ−1
t+1 (8)

2.3 Government The government consists of a monetary and a fiscal authority who face

the consolidated budget constraint, expressed in real terms

(1 + ρQM
t )BM

t−1

Pt
=
QM
t B

M
t

Pt
+ St (9)
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where St is the real primary budget surplus defined as

St = τtYt − Zt −Gt (10)

Gt is government demand for the composite goods and Zt is government transfer payments.

We consider a fiscal regime in which both Gt and Zt are exogenous processes and only τt

adjusts endogenously to ensure government solvency. This assumption breaks Ricardian

equivalence, so the government’s budget and the dynamics of public debt matter for welfare

and monetary policy can have important fiscal consequences.

An intertemporal equilibrium—or solvency—condition links the real market value of out-

standing government bonds to the expected present value of primary surpluses4

(1 + ρQM
t )

BM
t−1

Pt
= Et

∞∑
k=0

Rt,t+kSt+k (11)

where Rt,t+k = βk
Uc,t+k

Uc,t
is the k-period real discount factor.

The left-hand side of (11) highlights a key role of long-term bonds. With only one-period

bonds, ρ = 0, the nominal value of outstanding government bonds, BM
t−1, is predetermined,

so an unexpected change to the present value of primary surpluses must be absorbed entirely

by surprise inflation or deflation at time t. Long-term bonds, ρ > 0, imply that the nominal

value of government bond, (1+ρQM
t )BM

t−1, is no longer predetermined. Because the nominal

bond price QM
t , depends on expected future riskless short-term nominal interest rates5

QM
t = Et

∞∑
k=0

ρk

itit+1...it+k
(12)

solvency condition (11) may be written as[
1 + Et

∞∑
k=0

ρk

itit+1...it+k

]
︸ ︷︷ ︸
current and future monetary policy

BM
t−1

Pt
= Et

∞∑
k=0

Rt,t+kSt+k︸ ︷︷ ︸
current and future fiscal policy

(13)

Now an unexpected change to the present value of primary surpluses could be absorbed by

adjustments in current and future nominal interest rates, reducing the reliance on current

inflation.

4See Appendix A for the derivation of this condition.
5The riskless short-term nominal gross interest rate is defined by it =

[
QS

t

]−1
. See Appendix A for the

derivation of condition (12).
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Equilibrium condition (13) reflects a fundamental symmetry between monetary and fiscal

policies. The price level today must be consistent with expected future monetary and fiscal

policies, whether those policies are set optimally or not. Bond maturity matters: so long

as the average maturity exceeds one period, ρ > 0, expected future monetary policy in the

form of choices of the short-term nominal interest rate, it+k, plays a role in determining the

current price level.

2.4 Equilibrium Market clearing in the goods market requires

Yt = Ct +Gt (14)

and market clearing in labor market requires

∆
1

1+φ

t Yt = AtNt (15)

where ∆t =
∫ 1

0
(
Pjt

Pt
)−ϵ(1+φ)dj denotes the the measure of price dispersion across firms and

satisfies the recursive relation

∆t = (1− θ)

[
1− θπϵ−1

t

1− θ

] ϵ(1+φ)
ϵ−1

+ θπ
ϵ(1+φ)
t ∆t−1 (16)

Price dispersion is the source of welfare losses from inflation variability.

3 Fully Optimal Policy

In the fully optimal policy problem, government chooses functions for the tax rate, τt, and

the short-term nominal interest rate, it, taking exogenous processes for technology, At, the

wage markup, µWt , government purchases, Gt, and transfers, Zt, as given. We derive how the

optimal policy and welfare vary with the average maturity of government debt, as indexed

by ρ. We consider the case of a steady state distorted by distortionary tax and monopolistic

competition and focus on optimal policy commitment, adopting Woodford’s (2003) “timeless

perspective.”

3.1 Linear-Quadratic Approximation We compute a linear-quadratic approxima-

tion to the nonlinear optimal solutions, using the methods that Benigno and Woodford

(2004) develop. This allows us to characterize the optimal policy responses to fluctuations

in the exogenous disturbance processes within a neighborhood of the steady state.

In this model, distorting taxes and monopolistic competition conspire to make the deter-

ministic steady state inefficient, so an ad hoc linear-quadratic representation of the problem
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does not yield an accurate approximation of the optimal policy.6 Benigno and Woodford

(2004) show that a correct linear-quadratic approximation is still possible by properly uti-

lizing information from micro-foundations. Their approach computes a second-order ap-

proximation to the model’s structural equations and uses an appropriate linear combination

of those equations to eliminate the linear terms in the second-order approximation to the

welfare measure to obtain a purely quadratic expression.

We follow Benigno and Woodford’s micro-founded linear-quadratic approach for three

reasons. First, it allows us to obtain neat analytical solutions that help us to characterize

the properties of optimal policies and separate out the channels through which long-term

bonds affect optimal allocation. Second, the framework nests conventional analyses of both

optimal inflation-smoothing and optimal tax-smoothing, providing an integrated approach

to the two literatures. Third, the quadratic welfare criterion is independent of policy, which

permits us to compare our results to alternative sub-optimal policies.

Welfare losses experienced by the representative household are, up to a second-order

approximation, proportional to7

1

2
E0

∞∑
t=0

βt
(
qππ̂

2
t + qxx̂

2
t

)
(17)

where the relative weight on output stabilization depends on model parameters

qx
qπ

≡ κ

ϵ

[
1 +

s−1
c σ

φ+ s−1
c σ

(1 + wg)(1 + wτ )− s−1
c (1 + wg + wτ )

(Φ−1 − 1)Γ + (1 + wg)(1 + φ)

]
x̂t denotes the welfare-relevant output gap, defined as the deviation between Ŷt and its

efficient level Ŷ e
t , x̂t ≡ Ŷt − Ŷ e

t . Efficient output, Ŷ e
t , depends on the four fundamental

shocks and is given by Ŷ e
t = qAÂt + qGĜt + qZẐt + qWµ

W
t .8 wg = (Z̄ + Ḡ)/S̄ is steady-state

government outlays to surplus ratio, wτ = τ̄ /1−τ̄ , sc = C̄/Ȳ is the steady-state consumption

6One convenient way to eliminate the inefficiency of steady state is to assume an employment subsidy
that offsets the distortion due to the market power of monopolistically-competitive price-setters or distorting
tax, so that the steady state with zero inflation involves an efficient level of output. We instead consider a
more realistic case, where such employment subsidy is not available. See Kim and Kim (2003) and Woodford
(2011) for more discussions.

7See Appendices C–F for detailed derivations.
8Parameters qA, qG, qZ and qW are defined in appendix F.
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to GDP ratio, and

κ =
(1− θ)(1− βθ)

θ

s−1
c σ + φ

1 + ϵφ

Γ = (s−1
c σ + φ)(1 + wg) + s−1

c σwτ − wτ (1 + wg)

Φ = 1− (1− τ̄)
ϵ− 1

ϵ

Note that −Un

Uc
= (1−Φ)MPN , so Φ, which measures the inefficiency of the steady state, de-

pends on the steady state tax rate, τ̄ , and the elasticity of substitution between differentiated

goods, ϵ.

3.2 Linear Constraints Constraints on the optimization problem come from log-linear

approximations to the model equations. The first constraint comes from the aggregate supply

relation between current inflation and the output gap

π̂t = βEt[π̂t+1] + κ(x̂t + ψτ̂t) + ut (18)

where ut is a composite cost-push shock that depends on the four exogenous disturbances

ut ≡ κ

[
qA − 1 + φ

φ+ σs−1
c

]
︸ ︷︷ ︸

uA

Ât + κ

[
qG − σ

φ+ σs−1
c

sg
sc

]
︸ ︷︷ ︸

uG

Ĝt + κqZ︸︷︷︸
uZ

Ẑt + κ

[
qW +

1

φ+ σs−1
c

]
︸ ︷︷ ︸

uW

µ̂Wt

(19)

The exogenous disturbances generate cost-push effects through (19) because with a dis-

torted steady state, they generate a time-varying gap between the flexible-price equilibrium

level of output and the efficient level of output. If the steady state were not distorted, only

variations in wage markups would have cost-push effects. This is why wage markups are

regarded as “pure” cost-push disturbances.9

When τ̂t is exogenous, κψτ̂t + ut prevents complete stabilization of inflation and the

welfare-relevant output gap. Iterating forward on (18) yields

π̂t = Et

∞∑
k=0

βkκx̂t+k + Ut

where Ut ≡ Et
∑∞

k=0 β
k(κψτ̂t+k + ut+k) determines the degree to which stabilization of infla-

tion and output gap is not possible. This is the only source of trade-off between stabilization

9See Benigno and Woodford (2004) for detailed discussions.
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of inflation and output gap in conventional new Keynesian optimal monetary policy analyses

[for example, Gaĺı (1991)].

When τ̂t is chosen optimally along with monetary policy, then τ̂t can be set to fully absorb

cost-push shocks, making simultaneous stabilization of inflation and the output gap possible.

Benigno and Woodford (2004) rewrite (18) as

π̂t = βEt[π̂t+1] + κx̂t + κψ(τ̂t − τ̂ ∗t ) (20)

where τ̂ ∗t ≡ − 1
κψ
ut is the tax rate that offsets the cost-push shock. Expression (20) describes

the trade-off relation between inflation and output that fiscal policy faces because tax rates

can help stabilize output and inflation by offsetting variations in cost-push distortions.

A second constraint arises from the household’s Euler equation. After imposing market

clearing it may be written as

x̂t = Et[x̂t+1]−
sc
σ

(
ît − Et[π̂t+1]

)
+ vt (21)

where the composite aggregate demand shock, vt, is

vt ≡ qA(ρA − 1)︸ ︷︷ ︸
vA

Ât + (qG − sg)(ρG − 1)︸ ︷︷ ︸
vG

Ĝt + qZ(ρZ − 1)︸ ︷︷ ︸
vZ

Ẑt + qW (ρW − 1)︸ ︷︷ ︸
vW

µ̂Wt (22)

Alternatively, (21) can be written as

x̂t = Et[x̂t+1] +
sc
σ
Et[π̂t+1]−

sc
σ

(
ît − î∗t

)
(23)

where î∗t ≡ σ
sc
vt is the setting of the short-term nominal interest rate that exactly offsets

the composite demand-side shock.10 Expression (23) makes clear how monetary policy can

offset variations in demand-side distortions.

If (20) and (23) were the only constraints facing policy makers, it would be possible to

choose monetary and tax policies to completely stabilize inflation and output. Policy could

achieve the first-best outcome, π̂t = x̂t = 0, by setting

τ̂t = τ̂ ∗t ît = î∗t (24)

In the absence of any additional constraints on the policy problem, policy authorities who

are free to choose paths for the short-term nominal interest rate and tax rate can achieve

10Note that î∗t = σ
sc
Et[(ŷ

e
t+1 − ŷet )− sg(Ĝt+1 − Ĝt)], giving it an interpretation as the efficient level of the

real interest rate.
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the unconstrained maximum of welfare. To achieve this first-best outcome, policy must have

access to a non-distorting source of revenues or state-contingent debt that can adjust to

ensure that the government’s solvency requirements do not impose additional restrictions on

achievable outcomes.

When non-distorting revenues are not available, the government can convert nominal

bonds into state-dependent real bonds. If the government issues nominal bonds with average

maturity indexed by ρ, fiscal solvency implies the additional constraint

b̂Mt−1 + ft = βb̂Mt + (1− β)
τ̄

sd
(τ̂t + x̂t) + π̂t + β(1− ρ)Q̂M

t (25)

where sd ≡ S̄/Ȳ is the steady-state surplus to output ratio and ft is a composite fiscal shock

that reflects all four exogenous disturbances to the government’s flow constraint

ft ≡ −(1− β)
τ̄

sd
qA︸ ︷︷ ︸

fA

Ât + (1− β)

(
sg
sd

− τ̄

sd
qG

)
︸ ︷︷ ︸

fG

Ĝt + (1− β)

(
sz
sd

− τ̄

sd
qZ

)
︸ ︷︷ ︸

fZ

Ẑt−(1− β)
τ̄

sd
qW︸ ︷︷ ︸

fW

µ̂Wt

(26)

In general, all disturbances have fiscal consequences through (25) and (26), because nondis-

torting taxes are not available to offset their impacts on the government’s budget.

Absence of arbitrage between short-term and long-term bonds delivers the fourth con-

straint on the optimal policy program

βρEtQ̂
M
t+1 = Q̂M

t + ît (27)

Iterating on (27) and applying a terminal condition yields

Q̂M
t = −Et

∞∑
k=0

(βρ)k ît+k (28)

Defining the long-term interest rate iMt as the yield to maturity, iMt ≡ 1
QM

t
− (1 − ρ), we

obtain the term structure of interest rates

îMt =
1− βρ

1− β
Et

∞∑
k=0

(βρ)k ît+k (29)

When ρ = 0, all bonds are one period, îMt = 1
1−β ît, the long-term interest rate at time t

is proportional to the current short-term interest rate, so any disturbance to the long rate

will also affect the current short rate. When ρ > 0, the long-term interest rate at time t

14
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is determined by the whole path of future short-term interest rates, making intertemporal

smoothing possible. A disturbance to the long-term interest rate can be absorbed by adjust-

ing future short-term interest rates, with no change in the current short rate. By separating

current and future monetary policies, long bonds provide policy additional leverage.

Iterating forward on the government’s budget constraint (25) and imposing transversality

and the no-arbitrage condition (47), we obtain the intertemporal equilibrium condition

b̂Mt−1 + Ft︸ ︷︷ ︸
fiscal stress

=π̂t +
σ

sc
x̂t + (1− β)Et

∞∑
k=0

βk[bτ (τ̂t+k − τ̂ ∗t+k) + bxx̂t+k]

+ Et

∞∑
k=0

(βρ)k+1(̂it+k − î∗t+k)︸ ︷︷ ︸
due to long-term bonds

(30)

where bτ =
τ̄
sd
, bx =

τ̄
sd

− σ
sc

and

Ft = Et

∞∑
k=0

βkft+k − (1− β)
τ̄

sd
Et

∞∑
k=0

βkτ̂ ∗t+k + Et

∞∑
k=0

[βk+1 − (βρ)k+1 ]̂i∗t+k (31)

The sum b̂Mt−1+Ft summarizes the fiscal stress that prevents complete stabilization of inflation

and the welfare-relevant output gap. Given the definitions of τ ∗ and i∗, Ft reflects fiscal stress

stemming from three conceptually distinct but related sources: the composite fiscal shock,

ft, the composite cost-push shock, ut (through τ ∗t ), and the composite aggregate demand

shock, vt (through i
∗
t ).

11

Contrasting (30) to the one-period bond case in Benigno and Woodford (2004), the pres-

ence of long-term bonds gives a role to expectations of future monetary policies. Monetary

and fiscal policy can be coordinated so that households’ expectations about future policies

affect long-term interest rates to offset part of the overall fiscal stress in the economy.

With Ft fluctuating exogenously, complete stabilization of inflation and output, π̂t = x̂t =

0, which implies τ̂t = τ̂ ∗t , ît = î∗t , will not generally satisfy (30) and the government would

be insolvent. The additional fiscal solvency constraint prevents the first-best allocation from

being achievable. Any feasible allocation involves a tension between stabilization of inflation

and output gap, so the optimal policy must balance this tension.

11Ft corresponds to the fiscal stress that Benigno and Woodford (2004) define, but here it is extended to
the case of long-term bonds.
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4 Optimal Policy Analytics: Flexible Prices

In this section we characterize optimal equilibrium and policy assignment for the special

case of completely flexible prices. This case serves as a baseline, since with flexible prices

the trade-off between inflation and output gap disappears. It also connects to earlier work

by Chari et al. (1996) and Chari and Kehoe (1999), except that they considered only real

government bonds, while we consider nominal bonds. Flexible prices emerge when θ = 0,

which implies κ = ∞ and qπ = 0. Costless inflation converts the loss function from (17) to

1

2
E0

∞∑
t=0

βtqxx̂
2
t (32)

and the optimal policy problem minimizes (32) subject to the sequence of constraints

x̂t + ψ(τ̂t − τ̂ ∗t ) = 0 (33)

x̂t +
sc
σ
(̂it − î∗t )− Et[x̂t+1]−

sc
σ
Et[π̂t+1] = 0 (34)

b̂Mt−1 + Ft = π̂t+
σ

sc
x̂t + (1− β)Et

∞∑
k=0

βk[bτ (τ̂t+k − τ̂ ∗t+k) + bxx̂t+k]

+ Et

∞∑
k=0

(βρ)k+1(̂it+k − î∗t+k) (35)

The optimal solution entails x̂t = 0 at all times, which can be achieved if fiscal policy follows

τ̂t = τ̂ ∗t and monetary policy sets the short-term real interest rate as ît−Etπ̂t+1 = î∗t . In this

optimal policy assignment, fiscal policy stabilizes the output gap, monetary policy stabilizes

expected inflation and the maturity structure of debt determines the timing of inflation.

Equilibrium inflation satisfies

b̂Mt−1 + Ft = π̂t + Et

∞∑
k=1

(βρ)kπ̂t+k (36)

so increases in factors that prevent complete stabilization of the objectives b̂Mt−1 + Ft, raise

the expected present value of inflation. When ρ > 0, (36) implies that long-term bonds

allow the government to trade off inflation today for inflation in the future. The longer the

average maturity, the farther into the future inflation can be postponed. This conclusion is

reminiscent of Cochrane’s (2001) optimal inflation-smoothing result.
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When ρ = 0 and all bonds are one-period, (36) collapses to

b̂Mt−1 + Ft = π̂t (37)

and, as Benigno and Woodford (2007) emphasize, “optimal policy will involve highly volatile

inflation and extreme sensitivity of inflation to fiscal shocks.”

Flexible prices neglect the welfare costs of inflation. When prices are sticky and infla-

tion volatility is costly, the optimal allocation should balance variations in inflation against

variations in the output gap.

5 Optimal Policy Analytics: Sticky Prices

In the case where prices are sticky, the optimization problem finds paths for {π̂t, x̂t, τ̂t, ît, b̂Mt , Q̂M
t }

that minimize

1

2
E0

∞∑
t=0

βt[π̂2
t + λx̂2t ], λ ≡ qx

qπ
(38)

subject to the sequence of constraints

π̂t = βEt[π̂t+1] + κx̂t + κψ(τ̂t − τ̂ ∗t ) (39)

x̂t = Et[x̂t+1] +
sc
σ
Et[π̂t+1]−

sc
σ
(̂it − î∗t ) (40)

b̂Mt−1 = βb̂Mt + (1− β)
τ̄

sd
(τ̂t + x̂t) + π̂t + β(1− ρ)Q̂M

t − ft (41)

Q̂M
t = βρEtQ̂

M
t+1 − ît (42)

Taking first-order conditions with respect to π̂t, x̂t, ît, τ̂t, b̂
M
t and Q̂M

t , we obtain the fol-

lowing optimality conditions:

π̂t = −1− β

κψ

τ̄

sd
(Lbt − Lbt−1)− Lbt +

1

β
Lqt−1 (43)

λx̂t = (ψ−1 − 1)(1− β)
τ̄

sd
Lbt −

σ

sc
Lqt +

σ

sc

1

β
Lqt−1 (44)

β(1− ρ)Lbt − Lqt + ρLqt−1 = 0 (45)

EtL
b
t+1 − Lbt = 0 (46)

where Lbt and L
q
t are Lagrange multipliers corresponding to (41) and (42).The Lagrange mul-

tiplier to (39) is proportional to Lbt and the Lagrange multiplier to (40) is proportional to Lqt .

This allows us to substitue them out and express the optimal inflation and output gap merely
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by Lbt and L
q
t . We solve (39)–(46) for state-contingent paths of {π̂t, x̂t, ît, τ̂t, b̂Mt , Q̂M

t , L
q
t , L

b
t}.

Lbt measures the shadow cost of government budget resources. Note from (41), the only

control variable that appear to adjust the government budget resources is tax rate τt. There-

fore, we could think of Lbt as a measurement of how binding the fiscal solvency constraint is

on the conduct of fiscal policy. Lbt follows a martingale according to (46), implying intertem-

poral smoothing in fiscal financing. The extent of such smoothing, however, depends on the

property of bonds market. Usually with nominal bond, the bond price Q̂M
t could behave as

a nominal buffer to facilitate fiscal financing. Q̂M
t is determined by the whole path of current

and future short-term interest rates, by iterating (42),

Q̂M
t = −ît − Et

∞∑
k=1

(βρ)k ît+k (47)

Therefore, by allowing Q̂M
t to hedge against fiscal shock, the fiscal solvency condition

imposes constraint on current and future monetary policies. How much stress is transmitted

to current interest rate ît and how much stress is transmitted to future interest rates ît+k

is determined by the average maturity ρ. If ρ = 0, Q̂M
t = −ît, the fiscal hedging stress on

Q̂M
t is fully transmitted to current interest rate, therefore current monetary policy is most

constrained by fiscal solvency. If ρ > 0, Q̂M
t also depends on future short-term interest

rates. The fiscal hedging stress on Q̂M
t can be absorbed by future short-term interest rates,

reducing changes in the current short rate, in this way, current monetary policy is much less

constrained. Therefore, Lqt measures how tightly the current interest rate ît is constrained by

fiscal solvency condition. Lqt is determined by the the entire history of Lbt−k, and the degree

of history dependence rises with the average maturity of government debt,

Lqt = β(1− ρ)
∞∑
k=0

ρkLbt−k (48)

If ρ = 0, Lqt = βLbt , eliminating the history dependence. This is because Q̂M
t = −ît, if

nominal asset is used as fiscal hedging, then it must be the case that the disturbance at

time t is fully absorbed by interest rate at time t, no intertemporal smoothing is available.

Monetary policy is almost as constrained by fiscal solvency as fiscal policy itself is.12 In

the opposite extreme, consols make ρ = 1, so Lqt = 0. Current monetary policy is not

constrained, regardless of how binding the government’s budget has been in the past, as long

as future monetary policies are expected to adjust appropriately.13 From this perspective,

12This is precisely the exercise that finds the combination of active monetary/passive fiscal policies yields
highest welfare [Schmitt-Grohé and Uribe (2007) and Kirsanova and Wren-Lewis (2012)].

13Sims (2013) limits attention to this case.
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the role of long-term bond is to relax current monetary policy from fiscal stress by involving

more commitment to future monetary policies. Debt maturity introduces a fresh role for

expected monetary policy choices by allowing those expectations to help ensure government

solvency.14

We examine some special cases that allow us to characterize the optimal equilibrium and

the consequent stabilization role of fiscal and monetary policy analytically.

5.1 Only One-Period Bonds Suppose the government issues only one-period bonds,

rolled over every period. Then ρ = 0 and (48) and (29) reduce to

Lqt = βLbt (49)

îMt =
1

1− β
ît (50)

Long-term and short-term interest rates are identical, so Lbt and L
q
t covary perfectly. In

this case, the expressions for inflation, (43), and the output gap, (44), become

π̂t = −
(
1− β

κψ

τ̄

sd
+ 1

)
(Lbt − Lbt−1) (51)

λx̂t =

[(
ψ−1 − 1

)
(1− β)

τ̄

sd
− β

σ

sc

]
Lbt +

σ

sc
Lbt−1 (52)

Condition (51) implies that inflation is proportional to the forecast error in Lbt .
15 Because

(46) requires there are no forecastable variations in Lbt , the expectation of inflation is zero,

implying perfect smoothing of the price level

Etπ̂t+1 = 0 ⇒ Etp̂t+1 = p̂t (53)

Condition (52) makes the output gap a weighted average of Lbt and L
b
t−1. Taking expec-

tations yields

λ(Etx̂t+1 − xt) =
σ

sc
(Lbt − Lbt−1) (54)

so the expected change in the output gap next period is proportional to the surprise in the

multiplier on government solvency today. The optimal degree of output-gap smoothing varies

with λ, the weight on output in the loss function. The bigger is λ, the more smoothing of

the output gap. Flexible prices are a special case with λ = ∞ and perfect smoothing of the

14The new Keynesian literature emphasizes the role of expected monetary policy via its influence of the
entire future path of ex-ante real interest rates that enter the Euler equation, (21). The role we are discussing
for expected monetary policy is in addition to this conventional role.

15First-order condition (46) makes EtL
b
t+1 = Lb

t , so the surprise is Lb
t+1 − EtL

b
t+1 = ∆Lb

t+1.
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output gap. Under most calibrations, λ is quite small, implying little smoothing of output.

But the martingale property of Lbt implies smoothing of expected future output gaps after a

one-time jump. Taking expectations of (54) yields

x̂t ̸= Etx̂t+1 = Etx̂t+2 = ... = Etx̂t+k = ... (55)

Taken together, (53) and (55) imply that with only one-period bonds, optimal policies

smooth the price level, while using fluctuations in the output gap to absorb innovations in

fiscal conditions. The reason is apparent: with no long-term bonds, policy cannot smooth

inflation in the future and surprise inflation—and the resulting price dispersion—is far more

costly that variations in the output gap; it is optimal to minimize inflation variability and

use output as a shock absorber.

In this equilibrium, monetary and fiscal policies follow the rules

τ̂t − τ̂ ∗t =
1

κψ
(π̂t − κx̂t) (56)

ît − î∗t = − (σ/sc)
2

λ(1−β
κψ

τ̄
sd

+ 1)
π̂t (57)

so monetary policy pins down inflation by offsetting variations in demand-side disturbances

and fiscal policy stabilizes the output gap by responding to monetary policy and cost-push

disturbances.

5.2 Only Consols Suppose the government issues only consols. With ρ = 1, (48) and

(29) reduce to

Lqt = Lqt−1 = 0 (58)

îMt = Et

∞∑
k=0

βk ît+k (59)

In the case of consols, the long-term interest rate is determined by the entire path of

future short-term interest rates. Fiscal stress that moves long rates need not change short

rates contemporaneous, so long as the expected path of short rates satisfies (59). Inflation

and output are now

π̂t = −1− β

κψ

τ̄

sd

(
Lbt − Lbt−1

)
− Lbt (60)

λx̂t =
(
ψ−1 − 1

)
(1− β)

τ̄

sd
Lbt (61)
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Combining (60) and (61) yields

π̂t +
λ

κ(1− ψ)
(x̂t − x̂t−1)+

λ

(ψ−1 − 1)(1− β) τ̄
sd

x̂t = 0 (62)

an expression that generalizes the “flexible target criterion” found in conventional optimal

monetary policy exercises in new Keynesian models.16

Condition (61) makes the output gap proportional to Lbt . The martingale property of Lbt

makes the output gap also a martingale, so the gap is perfectly smoothed

Etx̂t+1 = x̂t (63)

Taking expectations of (60) and combining with (61), we have

Etπ̂t+1 − π̂t =
λ

κ(1− ψ)
(x̂t − x̂t−1) (64)

Condition (64) implies that the expected change in the inflation next period is propor-

tional to the forecasting error of x̂t. The degree of inflation smoothing changes inversely

with λ, the weight on output in the loss function, while the degree of inflation smoothing

varies proportionally with κ, the slope of the Phillips curve.

Combining (63) and (64), we draw opposite conclusions about the assignment between

inflation and output gap to the case of only one-period bonds. With only consols, intertem-

poral smoothing in the shadow price of the government budget constraint, Lbt , smoothes the

output gap, relying on fluctuations in inflation to absorb innovations in fiscal conditions. To

understand this, refer to the government solvency condition

b̂Mt−1 + βρQ̂M
t − π̂t = (1− β)Et

∞∑
k=0

βk(r̂t,t+k + ŝt+k) (65)

where r̂t,t+k is the log-linearized real discount rate. Consols introduce the possibility that

the bond price Q̂M
t can behave as a fiscal shock absorber: bad news about future surpluses

can reduce the value of outstanding bonds, leaving the real discount rate unaffected. A con-

stant real discount rate smoothes the output gap, which explains the absence of forecastable

variations in the output gap. Variations in the bond price Q̂M
t correspond to adjustments in

future inflation. The longer the duration of debt—higher ρ—the less is the required change

16Notice that as ψ → 0, which occurs as the steady state distorting tax rate approaches 0, Lb
t → 0 and

(62) approaches the conventional flexible target criterion with lump-sum taxes π̂t+
λ
κ (x̂t− x̂t−1) = 0 so that

the optimal inflation rate should vary with both the the rate of change in the output gap and the level of
the gap [see Woodford (2011) and references therein].
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in bond prices and future inflation for a given change in the present-value of surpluses. Al-

though with consols it is optimal to allow surprise inflation and deflation to absorb shocks,

the expectation of inflation is stabilized after a one-time jump

π̂t ̸= Etπ̂t+1 = Etπ̂t+2 = ... = Etπ̂t+k = ... (66)

Optimal monetary and fiscal policy obey

τ̂t − τ̂ ∗t =
1

κψ
(π̂t − βEtπ̂t+1 − κx̂t) (67)

ît − î∗t = Etπ̂t+1 = − λ

(1/ψ − 1)(1− β) τ̄
sd

x̂t (68)

Monetary policy pins down expected inflation, but not actual inflation. Expected inflation

determines how much fiscal stress is absorbed through changes in long-term bond prices

and with more adjustment occurring through inflation, the output gap is better stabilized.

Fiscal policy determines inflation by responding to monetary policy and cost-push side dis-

turbances.

5.3 General Case We briefly consider intermediate value for the average duration of

debt, 0 < ρ < 1. Rewrite (43) and (44) using the lag-operator notation, Ljxt ≡ xt−j

π̂t = −
(1− β) τ̄

sd

κψ
(1− L)Lbt − (1− L)(1− ρL)−1Lbt (69)

λx̂t = (ψ−1 − 1)(1− β)
τ̄

sd
Lbt −

σβ

sc
(1− ρ)(1− β−1L)(1− ρL)−1Lbt (70)

The optimality condition for debt that requires Lbt to be a martingale may be written as

(1− B)Et−1L
b
t = 0 (71)

where B is the backshift operator, defined as B−jEtξt ≡ Etξt+j.

Taking expectations of (69) and (70), and applying (71), we obtain a general relation

Etπ̂t+k = ρkπ̂t︸︷︷︸
smoothing

+ ρk
1− β

κψ

τ̄

sd
(Lbt − Lbt−1)︸ ︷︷ ︸

absorbing shock

, k ≥ 1 (72)

Etx̂t+k = ρkx̂t︸︷︷︸
smoothing

+(1− ρk)
1− β

λ
(
bτ
ψ

− bx)L
b
t︸ ︷︷ ︸

absorbing shock

, k ≥ 1 (73)
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Equations (72) and (73) are important to understand the effects of maturity structure on

the formation of expectations. Two opposite intentions – smoothing to increase welfare and

fluctuating to absorb shocks – both appear in determination of dynamics. The resulting evo-

lution of inflation and output gap depends on how much weight being put on each intention.

The weight is generally time-varying and determined by ρk (only ρ = 0 or 1 makes ρk not

time-varying). For inflation, both weights on smoothing and shock absorbing are given by

ρk, which is increasing in ρ and decreasing in k. Therefore, as the average maturity of debt

rises, inflation is expected to be more smoothed and more responsive to exogenous shocks.

However, this effect decays as time grows. In the time limit, expectation of future inflation

will converge to zero, limk→∞Etπt+k = 0. For output, the weight on smoothing is given by

ρk, and the weight on shock absorbing is given by 1−ρk. Therefore, as the average maturity

of debt rises, output gap is expected to be more smoothed and less responsive to exogenous

shocks. The time also matters. Given the average maturity, the further the period (the

bigger the k), the less smoothing and more responsive to the exogenous shocks. In the limit,

expectation of output gap will converge to a constant level, limk→∞Etxt+k = 1−β
λ

σ
sc
Lbt , a

permanent deviation.

6 Calibration

We turn to numerical results from the model calibrated to U.S. data in order to focus on a

set of implications that may apply to an actual economy.

Table 1 reports a calibration to U.S. time series. We take the model’s frequency to be

quarterly and adopt some parameter values from Benigno and Woodford (2004), including

β = 0.99, θ = 0.66 and ϵ = 10; we set φ = σ = 0.5, implying a Frisch elasticity and an

intertemporal elasticity of substitution of 2.0, both reasonable empirical values. Quarterly

U.S. data from 1948Q1 to 2013Q1 underlie the values of sb, sg, sz and are used to estimate

autoregressive processes for At, Gt, τt, Zt shocks.
17 Following Gali et al. (2007), the wage

markup shock is calibrated as an AR(1) process with persistence of 0.95 and standard de-

viation of 0.054. Table 1’s calibration makes the relative weight on output-gap stabilization

equal to λ = 0.0033, slightly higher than the value used in Benigno and Woodford (2007)

(λ = 0.0024).18

17Appendix H provides details.
18Benigno and Woodford’s calibration of σ = 0.16 largely explains the difference in the values of λ.
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parameter definition value
β discount rate 0.99
σ the inverse of intertemporal elasticity of substitution 0.50
φ the inverse of Frisch elasticity of labor supply 0.50
θ the fraction of firms cannot adjust their prices 0.66
ϵ intratemporal elasticity of substitution across consumption goods 10
sc steady state consumption to gdp ratio 0.87
sz steady state government transfer payment to gdp ratio 0.09
sg steady state government spending-gdp ratio 0.13
sb steady state debt-gdp ratio 0.49× 4
τ̄ steady state tax rate 0.24
ρa autoregressive coefficient of tech shock 0.786
ρg autoregressive coefficient of government spending shock 0.886
ρτ autoregressive coefficient of tax rate shock 0.782
ρz autoregressive coefficient of transfer payment shock 0.56
ρw autoregressive coefficient of wage markup shock 0.95
σae standard deviation of innovation to tech shock 0.008
σge standard deviation of innovation to government spending shock 0.027
στe standard deviation of innovation to tax rate shock 0.029
σze standard deviation of innovation to transfer payment shock 0.047
σwe standard deviation of innovation to wage markup shock 0.054

Table 1: Calibration to U.S. Data
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7 Separating the Impacts of Maturity

To fully understand the impacts of debt maturity on the tradeoffs between inflation and

output stabilization, we rewrite the government intertemporal equilibrium condition (30) in

terms of only inflation and the output gap

b̂Mt−1 + Ft = π̂t + (1− β)
bτ
κψ

π̂t︸ ︷︷ ︸
surprise inflation

+Et

∞∑
k=1

(βρ)kπ̂t+k︸ ︷︷ ︸
future inflation

− (1− β)bτ (
1

ψ
− 1)Et

∞∑
k=0

βkx̂t+k︸ ︷︷ ︸
future output

−Et

∞∑
k=0

[(1− β)βk − (1− βρ)(βρ)k]
σ

sc
(x̂t+k − x̂t)︸ ︷︷ ︸

real interest rate

(74)

Given the fiscal stress, b̂Mt−1 + Ft, (74) completely summarizes feasible paths of current

and expected inflation and output gaps. To absorb exogenous disturbances to Ft, some

combination of paths of inflation and output must adjust. This equation underscores the

inherent symmetry between monetary and fiscal policy: interactions between the two policies

determine the reliance on variations in output gaps versus inflation rates.

Average duration of government bonds affects the optimal equilibrium through three

channels. First, it affects overall fiscal stress, Ft, given the processes of exogenous distur-

bances. Second, it affects the allocation of inflation rates over time. Third, it affects real

allocations through changing real discount rates.

7.1 ρ’s Impact on Ft Ft, a composite measure of fiscal stress, summarizes the factors in

our model that prevent complete stabilization of inflation and the welfare-relevant output

gap. Ft may be expressed in terms of the four fundamental shocks

Ft = FAÂt + FGĜt + FZẐt + FW µ̂
W
t (75)

where

Fx = (1− βρx)
−1[fx + (1− β)

τ̄

sd

1

κψ
ux + β

σ

sc
vx]− βρ(1− βρρx)

−1 σ

sc
vx, x = A,G,Z,W

(76)

The average maturity of bonds affects the amount of fiscal stress imposed on equilibrium

through the weights attached to each fundamental shock. Figure 1 plots the feedback coef-

ficients for each of the fundamental shocks, as defined in (75). FA is negative for all average
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bond durations, while FG, FZ , FW are positive. A positive innovation to technology helps

relieve fiscal stress by raising tax revenues, improving the tension between inflation and the

output gap. Positive innovations to wage markups, government spending or transfer pay-

ments, in contrast, aggravate fiscal stress and make it more difficult to stabilize inflation and

the output gap contemporaneously. The impacts of technology, wage markups and govern-

ment spending shocks abate as the average maturity of bonds grows longer, while the impact

of government transfers becomes stronger with longer-term bonds. In all case, though, the

effects of the average maturity of bonds arise mainly when maturity extends from short-

term (1 quarter) to medium-term (5 years); extending beyond 5 years does little. Finally,

the impact of each fundamental shock on fiscal stress is ranked |FW | > |FA| > |FG| > |FZ |.
Wage markups and technology shocks affect Ft more strongly than do government spending

and transfers shocks. The complicated heterogeneity among different shocks in affecting

the overall fiscal stress makes some of our results sensitive to the calibration of the four

fundamental shocks.
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Figure 1: The mapping from fundamental shocks Ât (technology), µ̂
W
t (wage markup), Ĝt

(government purchases), Ẑt (government transfers) to fiscal stress, Ft, in (75).

We turn now to study how the changes in average maturity of government bonds affects

the tradeoff between stabilizing inflation and output gap. To distinguish the average maturity

structure’s impact on inflation and output gap, we consider two polar sub-optimal cases: i)

complete stabilization of the output gap, depending only on inflation as a shock absorber
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and ii) complete stabilization of inflation, using only the output gap as a shock absorber.

7.2 Inflation Smoothing Complete output stabilization sets x̂t ≡ 0 for all t ≥ 0 and

uses current and future inflation to fully absorb innovations to b̂Mt−1 + Ft. This polar case

eliminates the effect of maturity on tax smoothing and to focus on how alternative maturity

structures dynamically allocate inflation. Constraint (74) becomes

b̂Mt−1 + Ft = π̂t + (1− β)
bτ
κψ

π̂t︸ ︷︷ ︸
surprise inflation

+Et

∞∑
k=1

(βρ)kπ̂t+k︸ ︷︷ ︸
bond prices

(77)

The term (1−β) bτ
κψ
π̂t stems from the effects of distorting taxes on inflation at time t. Recall

that the Phillips curve

π̂t = Et

∞∑
k=0

βk[κx̂t+k + κψ(τ̂t+k − τ̂ ∗t+k)]

implies that increasing future tax rates decreases the path of output or increases current

inflation. When output is fully stabilized, inflation must rise. This inflationary effect of fiscal

policy is absent from Cochrane (2001) and Sims (2013) and arises here from distortionary

taxes.

Consider the following optimal inflation-smoothing problem

min
1

2
E0

∞∑
t=0

βtqππ̂
2
t

s.t. b̂Mt−1 + Ft = bππ̂t + Et

∞∑
k=1

(βρ)kπ̂t+k (78)

where bπ = 1 + (1− β) bτ
κψ
. First order condition yields

π̂t = bπλt + (1− bπ)ρλt−1 (79)

Etλt+1 = ρλt (80)

where λt is the multiplier associated with the intertemporal solvency condition, and it is

known as the shadow price which measures the marginal change in the objective function

arising from an infinitesimal change in the constraint. Condition (80) implies that the shadow

price associated with fiscal stress is expected to decay at the rate of ρ.
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In our model, if we set bτ = 0, eliminating the effects of distorting taxes in Phillips curve,

then bπ = 1, condition (78), (79) and (80) imply

π̂t = (1− βρ2)(b̂Mt−1 + Ft)

Etπ̂t+k = ρkπ̂t, k ≥ 1

Thus unexpected changes in the fiscal stress term must be accommodated entirely by surprise

variations in current and future inflation. The immediate response of inflation at time t is

increasing in the fiscal stress Ft and decreasing in the average maturity ρ. The longer the

average maturity of government bonds, the smaller the immediate response of inflation.

Future inflations are expected to decay at the rate of ρ. When ρ = 1, perfect smoothing in

inflation Etπ̂t+k = π̂t, as in Sims (2013).

In general, taking expectation of (79) and applying (80), we obtain

Etπ̂t+1 =
ρ

bπ
π̂t +

bπ − 1

bπ
ρ2λt−1 and Etπ̂t+k+1 = ρEtπ̂t+k, k ≥ 1

If ρ = 0, we have Etπ̂t+k = 0 (k ≥ 1), inflation is expected to remain at zero. If ρ = 1,

we have Etπ̂t+k = π̂t
bπ

+ bπ−1
bπ

λt−1 (k ≥ 1), inflation is expected to deviate permanently by

a constant amount. If 0 < ρ < 1, inflation is expected to deviate by ρ
bπ
π̂t +

bπ−1
bπ

ρ2λt−1 at

period t+1 and then decay at rate of ρ afterwards. The immediate response of inflation at

period t is given by

π̂t =
b̂Mt−1 + Ft − βρ3

1−βρ2
bπ−1
bπ

λt−1

bπ +
βρ2

1−βρ2 b
−1
π

(81)

Figure 2 plots responses of inflation to a unit innovation in fiscal stress, Ft. With only

one-period bonds, inflation jumps immediately and then returns to zero, since intertemporal

smoothing of inflation is unavailable. With 5-year bonds, inflation reacts less aggressively

in the first period, and then gradually goes back to zero. The presence of long-term bonds

allows the government to tradeoff inflation today for inflation in the future. Finally, with

consols, the immediate response of inflation is the smallest, with future inflation permanently,

but only slightly, higher.19

19This result differs slightly from Sims (2013), who finds complete smoothing of inflation with only consols.
Differences stem from Sims’s use of lump-sum taxes, which do not have the direct inflationary effects that
distortionary taxes produce.
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Figure 2: Inflation responses to a one unit innovation in fiscal stress

7.3 Output Smoothing Suppose now that π̂t ≡ 0 so that adjustments in current and

future output gaps must absorb innovations to b̂Mt−1 + Ft. Then (74) becomes

b̂Mt−1 + Ft = −(1− β)

(
bτ
ψ

− bx

)
Et

∞∑
k=0

βkx̂t+k︸ ︷︷ ︸
tax revenues

+
σ

sc
(1− βρ)Et

∞∑
k=0

(βρ)kx̂t+k︸ ︷︷ ︸
bond price

(82)

Changes in output help to satisfy the solvency condition by directly affecting tax revenues

and by the impacts of output on real returns to the bond portfolio. These two parts produce

opposite effects. Consider an exogenous increase in fiscal stress. Relying on tax revenues to

fully offset this disturbance requires increasing the tax rate. But by the Phillips curve

π̂t = Et

∞∑
k=0

βk[κx̂t+k + κψ(τ̂t+k − τ̂ ∗t+k)]

when πt ≡ 0, a higher tax rate must reduce output. This is the negative effect in the first

term. Lower output generates a second effect by increasing real returns on long-term bonds.

This positive effect is captured by the second term. The second effect is usually omitted by

assuming a constant or exogenous real discount rate as in Cochrane (2001) and Sims (2013).

In our model, if we set σ = 0, then utility is linear and the real rate is constant. This mutes

the second channel and we obtain a smoothing of the output gap Etx̂t+1 = x̂t as in Sims

(2013).
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Consider the following optimal output-gap smoothing problem:

min
1

2
E0

∞∑
t=0

βtqxx̂
2
t

s.t. b̂Mt−1 + Ft =mxEt

∞∑
k=0

(βρ)kx̂t+k − nxEt

∞∑
k=0

βkx̂t+k (83)

where mx = (1− βρ) σ
sc

and nx = (1− β)( bτ
ψ
− bx). The first-order condition yields

x̂t = mx(µt − µt−1)− nx(µt − ρµt−1) (84)

Et(µt+1 − µt) = ρ(µt − µt−1) (85)

Et(µt+1 − ρµt) = µt − ρµt−1 (86)

where µt is the multiplier associated with the intertemporal solvency condition (83). Condi-

tion (84) implies that the output gap can be expressed by two terms, the first term (µt−µt−1)

is expected to decay at rate of ρ according to (85) ; the second term (µt− ρµt−1) is expected

to be perfectly smoothed according to (86). The dynamics of output gap depends on the

relative weight on each term – mx and nx. Note that mx is decreasing in ρ and nx is con-

stant, therefore, the longer the average maturity, the smaller weight on the decaying term,

the more smoothing in output gap. When σ = 0, mx = 0, therefore output gap is perfectly

smoothed.

Furthermore, we can express the expectation of output gap as

Etx̂t+k = x̂t +mx(ρ
k − 1)(µt − µt−1), k ≥ 1

Therefore, the difference of output gaps between two periods x̂t+k − x̂t (for any k ≥ 1) is

expected to decay at rate of ρ. If ρ = 0, we have Etx̂t+k = x̂t − σ
sc
(µt − µt−1) (k ≥ 1),

output gap is expected to deviate permanently by a constant amount. If ρ = 1, we have

Etx̂t+k = xt (k ≥ 1), output gap is expected to be perfectly smoothed out. The immediate

response of output gap at period t is given by

x̂t =
b̂Mt−1 + Ft − cx(µt − µt−1)

(1− ψ−1)bτ
(87)

where cx = β[
(1−ρ)2( σ

sc
)2

1−βρ2 + (1− ρ) σ
sc
(ψ−1 − 1)bτ ].

Figure 3 plots responses of output-gap to a unit innovation in fiscal stress, Ft. With only

one-period bonds, the output gap first jumps by a large amount at time 0 and then drop
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Figure 3: Output responses to a one unit innovation in fiscal stress

to a constant level. With 5-year bonds, output drops in the first period and then gradually

converges to the same level as with one-period bonds. With consols, the output gap is

perfectly smoothed. Long-term bonds allow the government to smooth the output gap.

8 Optimal Choice Between Inflation and Output Stabilization

This section brings together inflation smoothing with output gap smoothing to examine

the joint determination of output and inflation in the presence of distortionary taxes and

sticky prices. With distortionary taxes, variations in tax rates lead to distortions in real

allocations and generates welfare loss; with sticky prices, unexpected variations in inflation

create distortions in the allocation of resources and reduces welfare. If there is a disturbance

to the government budget, monetary and fiscal policy face a tradeoff between stabilizing

inflation and stabilizing the output gap. Panel III in figure ?? plots the impulse responses

under the fully optimal solution to a unit increase in fiscal stress. Responses are much like

a combination of responses in panels I and II. Both inflation and output adjust to absorb

disturbances to Ft.

The optimum problem minimizes the loss function

L =
1

2
E0

∞∑
t=0

βt(qππ̂
2
t + qxx̂

2
t ) (88)
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subject to the constraint given by (74)

b̂Mt−1 + Ft =π̂t + (1− β)
bτ
κψ

π̂t + Et

∞∑
k=1

(βρ)kπ̂t+k

− (1− β)bτ (
1

ψ
− 1)Et

∞∑
k=0

βkx̂t+k − Et

∞∑
k=0

[(1− β)βk − (1− βρ)(βρ)k]
σ

sc
(x̂t+k − x̂t)

Solving this problem yields the optimal equilibrium paths of inflation and the output gap.

Defining Lπ = 1
2
E0

∑∞
t=0 β

tqππ
2
t and Lx = 1

2
E0

∑∞
t=0 β

tqxx
2
t , we can decompose the loss

function into two parts

L = Lπ + Lx (89)

where Lπ measures the welfare loss from fluctuations in inflation (expected present value of

welfare losses associated with inflation variability) and Lx measures the welfare loss from

fluctuations in output (expected present value of welfare losses associated with output-gap

variation).20 For each value of average maturity ρ, we compute the value of loss function L

and the optimal mix of Lπ and Lx, which we plot in the upper panel of figure 4.

The left panel of figure 4 plots the value of objective loss L as a function of ρ. The loss

function is hump-shaped in ρ: when the average maturity increases from 1 to 2 quarters,

the objective loss L, expressed in terms of the equivalent permanent consumption decline,

increases by 1 percentage point; after 2 quarters, the loss L decreases monotonically in ρ. To

see why the loss function is hump-shaped, return to figure ??. When the average maturity is

relatively short, the output gap tends to be volatile, increasing welfare losses. Our conclusion

is consistent with Eusepi and Preston (2012), who find that medium average maturity is most

harmful for stability.

In the right panel of figure 4, the present value of welfare losses for inflation variation, Lπ,

is plotted along the horizontal axis and the losses from output fluctuations, Lx, is plotted

along the vertical axis. L = Lπ + Lx represents negatively sloped isoloss lines. Isoloss lines

closer to the origin correspond to lower loss. The optimal mix of Lπ and Lx is plotted as

shaded circles as ρ varies. For all maturities, Lx is almost 10 times larger than Lπ, implying

that inflation is better stabilized than is the output gap. Other dynamic patterns emerge.

As the average maturity of bonds moves from 1 to 2 quarters, both Lπ and Lx increase,

consistent with the increase in the overall loss function. As average maturity moves from 2

20We define Lx and Lπ using second moment of π̂t and x̂t intead of computing uncontional variance of
π̂t and x̂t, because with ρ > 0, x̂t and π̂t might have unit root, and the variances are time-varying. This is
analogous to Taylor’s (1979) policy tradeoff curves.
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Figure 4: Welfare losses—total and due to inflation and output variability—as a function of
average duration of government debt, expressed as percentages of steady state consumption

quarters toward consols, Lx decreases and Lπ generally increases: stabilization of the output

gap becomes more desirable from a welfare perspective as the average maturity of debt

extends.

To shed light on the relative importance of inflation versus output variation as sources

of welfare losses, the lower panel of figure 4 plots the ratios Lπ

L
and Lx

L
for different average

maturities. When the average maturity is 1 quarter, Lπ accounts for 6.7% of overall loss while

Lx accounts for 93.3% of overall loss. As the average maturity gets longer, Lπ accounts for a

33



Leeper & Zhou: Inflation’s Role in Optimal Policy Mix

larger fraction of the welfare losses. In the case of consols, Lπ accounts for 10% of overall loss

while Lx accounts for 90%. There is a strictly increasing trend in depending on fluctuations

in inflation to hedge against exogenous shocks when average maturity of government debt

extends.

9 Fiscal Financing

Sims (2013) emphasizes the role of surprise inflation as a “fiscal cushion” that can reduce the

reliance on distorting sources of revenues. One way to quantify the fiscal cushion is to use

the government’s solvency condition to account for the sources of fiscal financing—including

current and future inflation—following an innovation in the present value of fiscal stress Ft.

The government solvency condition may be written as

b̂Mt−1 + Ft = π̂t + (1− β)
bτ
κψ

π̂t︸ ︷︷ ︸
surprise inflation

+Et

∞∑
k=1

(βρ)kπ̂t+k︸ ︷︷ ︸
future inflation

− (1− β)bτ (ψ
−1 − 1)Et

∞∑
k=0

βkx̂t+k︸ ︷︷ ︸
future output

−Et

∞∑
k=0

[(1− β)βk − (1− βρ)(βρ)k]
σ

sc
(x̂t+k − x̂t)︸ ︷︷ ︸

real interest rate

(90)

Fiscal financing underscores the inherent symmetry between monetary and fiscal policy:

interactions between the two policies determine the reliance on tax revenues, which decreases

output, versus current and future inflation.

Figure 5 plots the financing decomposition for one unit increase of fundamental shock as

a function of the average duration of government bonds for the calibration to U.S. data in

table 1. The pattern of this decomposition is robust in that it does not depend on the nature

of shocks. In figure 5 the vast majority of financing comes from a decrease in output. As the

average duration increases, ρ→ 1, the importance of real interest rate adjustments dissipates.

In the new Keynesian model, real interest rates transmit immediately into movements in the

output gap, so at short durations, distortions in output are relatively big. As duration

rises, it is optimal to smooth output more, so real interest rate movements diminish. In the

limit, when ρ = 1, the present value of real interest rates is zero and it is optimal to make

Etx̂t+1 = x̂t and rely instead on inflation as a fiscal cushion.

Sources of fiscal financing are particularly sensitive to the level of debt in the economy.

Figure 6 reports fiscal financing decompositions under three steady state debt-GDP levels:
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Fiscal Financing Decomposition

0 20 40 60 80 100
0

1

2

3

4

quarters

 

 
PV(real interest rate)

0 20 40 60 80 100
89.5

90

90.5

91

91.5

92

92.5

93

quarters

 

 

PV(future output)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

quarters

 

 
PV(future inflation)

0 20 40 60 80 100
6.65

6.7

6.75

6.8

6.85

6.9

6.95

quarters

 

 

surprise inflation

Figure 5: Fraction of fiscal stress innovation financed by each of the four components (90),
as a function of average duration of government debt

the calibration to U.S. data (49 percent), “low debt” (20 percent), “high debt” (100 percent).

As the level of debt rises, the reliance on tax financing declines. With very short debt

duration, changes in real interest rates account for a substantial fraction of financing in

high-debt economies. Reliance on real rates declines rapidly as duration rises, with future

inflation becoming increasingly important. With long-duration debt, high-debt economies

would finance over 20 percent of a fiscal stress innovation with current and future inflation.

10 Contrast to Conventional Optimal Monetary Policy

The conventional optimal monetary policy problem, as Woodford (2011) describes, typically

assumes a nondistorting source of revenue exists, so that stabilization policy abstracts from

fiscal policy distortions.21 To place the conventional optimal problem on an equal footing

with the fully optimal problem, we have the government optimally choose the interest rate

function, taking as given exogenous processes for technology, government spending, the dis-

torting tax rate and wage markup; lump-sum transfers (or taxes) adjust passively to ensure

the government’s solvency condition never binds. In the conventional problem, the maturity

structure of debt is irrelevant. In this section we contrast fully optimal policy to the con-

21Key earlier expositions of the conventional optimal monetary policy problem include Clarida et al.
(1999b) and Woodford (2003).
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Fiscal Financing Decomposition for Different Debt Levels
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Figure 6: Fraction of fiscal stress innovation financed by each of the four components (90),
as a function of average duration of government debt, for three steady state debt-output
ratios

ventional optimal monetary policy. In both cases, we examine the case of a distorted steady

state.

Figure 7 plots the value of the loss function under the conventional optimal monetary

policy—straight yellow line—and under the fully optimal monetary and fiscal policies—

dotted red line—as a function of the average duration of government debt. These calculations

employ the calibration in table 1 for U.S. data. The value of loss objective function under

fully optimal polices is hump-shaped in ρ, and even though fully optimal policies do not use

lump-sum taxes to make the government solvency condition non-binding, welfare is higher

under fully optimal policies if the average maturity is long enough (longer than 21 years).

The figure shows that welfare under the two optimal policy regimes can be made equivalent

by extending the average maturity of bond. However, this welfare-equivalence result and the

level of average maturity that achieves the the welfare-equivalence might be sensitive to our

calibration.

Figure 8 reports the implications of average debt levels for the threshold value of average

maturity that achieves equivalent welfares between fully optimal policies and conventional

36



Leeper & Zhou: Inflation’s Role in Optimal Policy Mix

optimal monetary policy. We consider the range of [20%, 100%], which covers most countries’

debt-to-GDP ratios in the world. We see that when the debt-to-GDP ratio is at low level

(below 40%), no average maturity exists that achieves equivalent welfares: welfare under

fully optimal polices is always inferior to the conventional optimal monetary policy with

lump-sum taxes, no matter how long the average maturity. It is possible to achieve welfare

equivalence only in medium- to high- debt economies, that is, only when debt-to-GDP ratio

is higher than 40%. Moreover, the higher the debt levels, the shorter the threshold value of

average maturity to achieve welfare equivalence.

Figure 9 reports the implications of standard deviations of wage markup shock for the

threshold value of average maturity that achieves equivalent welfares between fully optimal

policies and conventional optimal monetary policy. We consider the range of [0.02, 0.06],

which covers most calibrations of standard deviation of wage markup in the literatures.
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Figure 7: Value of loss function as a percentage of steady state consumption

11 Concluding Remarks

This paper examines the joint determination of optimal monetary and fiscal policy in the

presence of distorting tax and sticky prices. We study how the presence of long-term bonds

affects optimal allocations between inflation and output gap, and the consequent stabilization

role for monetary and fiscal policy.

We identified three channels for long-term bonds to have effect on optimal allocations

between inflation and output gap. First, long-term bonds affect the aggregate fiscal stress

imposed on the intertemporal solvency condition that prevents complete stabilization of

inflation and welfare-relevant output gap. Second, long-term bonds facilitate intertemporal
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Figure 8: Threshold level of average maturity that equates welfare under fully optimal
monetary and fiscal policies and welfare under conventional optimal monetary policy with
passively adjusting lump-sum taxes, as a function of debt-output ratio
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Figure 9: Threshold level of average maturity that equates welfare under fully optimal
monetary and fiscal policies and welfare under conventional optimal monetary policy with
passively adjusting lump-sum taxes, as a function of the standard deviation of wage markup
shock

smoothing for inflation. Third, which is new in our paper, long-term bond also smoothes

welfare-relevant output gap by smoothing real interest rates.

To study inflation’s role as a “fiscal cushion,” we use the government’s solvency condition

to account for the sources of fiscal financing. As the duration of government debt rises, it

is optimal to smooth output more and to rely on current and future inflation innovations
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to revalue government bond. In the limit, with only consol debt, it is optimal to perfectly

smooth real interest rates and rely instead on inflation as a fiscal cushion. Sources of fiscal

financing are also sensitive to the level of debt in the economy. As the level of bonds rises,

the reliance on tax financing declines. With long-duration bond, high-debt economies (100%

debt to GDP ratio) would finance over 20 percent of a fiscal stress innovation with current

and future inflation.

Finally, we contrast the welfare under fully optimal policy to the conventional optimal

monetary policy case where lump-sum taxes are available to always guarantee government

solvency. We show that welfare under the two optimal policy regimes can be made equivalent

by extending the average maturity of bond.
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A Derivation of Long-term Bond Price and IEC

Define

Qt,t+k = βk
Uc,t+k
Uc,t

Pt
Pt+k

(A.1)

as the stochastic discount factor for the price at t of one unit of composite consumption goods at

t+ k. Then (2) and (3) in the text can be written as

QSt =EtQt,t+1 (A.2)

QMt =EtQt,t+1(1 + ρQMt+1) (A.3)

Iterating on (A.3) and imposing a terminal condition yields

QMt =Et[Qt,t+1 + ρQt,t+1Q
M
t+1]

=Et{Qt,t+1 + ρQt,t+1Et+1Qt+1,t+2 + ρ2Qt,t+1Et+1[Qt+1,t+2Et+2Qt+2,t+3] + ...}

=QSt + ρEt[Qt,t+1Q
S
t+1] + ρ2Et[Qt,t+1Et+1(Qt+1,t+2Q

S
t+2)] + ...

=QSt + ρEt[Qt,t+1Q
S
t+1] + ρ2Et[Qt,t+2Q

S
t+2] + ...+ ρkEt[Qt,t+kQ

S
t+k] + ...

=QSt + Et

∞∑
k=1

ρkEt[Qt,t+kQ
S
t+k] (A.4)

Equation (A.4) implies that the long-term bond’s price is determined by weighted average of ex-

pectations of future short-term bond’s prices.

Substitute (A.1) into (A.4)

QMt = Et [β
Uc,t+1

Uc,t

Pt
Pt+1

+ ρβ2
Uc,t+2

Uc,t

Pt
Pt+2

+ ...+ ρk−1βk
Uc,t+k
Uc,t

Pt
Pt+k

+ ...]

= Et

∞∑
k=1

ρk−1βk
Uc,t+k
Uc,t

Pt
Pt+k

(A.5)

Condition (A.5) implies that the long-term bond price is determined by the whole path of expected

future price level, discounted by consumption growth rate. The long-term bond price is negatively

correlated with expected future inflation rate and consumption growth rate.

Rewrite (A.3) as

QMt =EtQt,t+1(1 + ρQMt+1)

=EtQt,t+1Et(1 + ρQMt+1) + ρ cov(Qt,t+1, Q
M
t+1)

=EtQ
S
t (1 + ρQMt+1) + ρ cov(Qt,t+1, Q

M
t+1) (A.6)
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Recall from (A.5) that

QMt+1 = Et

∞∑
k=1

ρk−1Qt+1,t+1+k

QMt+1 is determined by weighted average of expected future discounted value of future stochastic

discount factors. Therefore, without loss of generality, we assume cov(Qt,t+1, Q
M
t+1) = 0, and (A.6)

can be expressed as

QMt = EtQ
S
t (1 + ρQMt+1) (A.7)

To derive intertemporal equilibrium condition, we iterate on government’s period budget con-

straint, (9), and impose asset-pricing relations and the household’s transversality condition:

(1 + ρQMt )
BM
t−1

Pt
= QMt

BM
t

Pt
+ St

= Et[
QMt Q

M
t+1πt+1

1 + ρQMt+1

BM
t

Pt
+

QMt πt+1

1 + ρQMt+1

St+1 + St]

= Et[St +
QMt πt+1

1 + ρQMt+1

St+1 +
QMt Q

M
t+1πt+1πt+2

(1 + ρQMt+1)(1 + ρQMt+2)
St+2 + ...] (A.8)

Substituting (A.1) and (A.3) into (A.8) yields

(1 + ρQMt )
BM
t−1

Pt
= Et

∞∑
i=0

βi
Uc,t+i
Uc,t

St+i (A.9)

To derive (11) in the text, combine (A.5) and (A.9)

Et

( ∞∑
k=0

ρkβk
Uc,t+k
Uc,t

1

Pt+k

)
BM
t−1 = Et

∞∑
i=0

βi
Uc,t+i
Uc,t

St+i (A.10)

B Derivation of Nonlinear First Order Conditions

The full nonlinear optimal policy problem maximizes

E0

∞∑
t=0

βtU(Yt,∆t, ξt)
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subject to

[
1− θπϵ−1

t

1− θ
]
1+ϵφ
1−ϵ =

ϵ

ϵ− 1

Kt

Jt
(B.1)

Kt = (
Yt
At

)φ+1 + βθEtKt+1π
ϵ(1+φ)
t+1 (B.2)

Jt = (1− τt)Uc,tYt + βθEtJt+1π
ϵ−1
t+1 (B.3)

(1 + ρQMt )
bMt−1

πt
= QMt b

M
t + τtYt − Zt −Gt (B.4)

QMt = βEt
Uc,t+1

Uc,t

1

πt+1
(1 + ρQMt+1) (B.5)

∆t = (1− θ)[
1− θπϵ−1

t

1− θ
]
ϵ(1+φ)
ϵ−1 + θπ

ϵ(1+φ)
t ∆t−1 (B.6)

The first-order conditions are

Yt : UY,t − λ2t (φ+ 1)A
−(φ+1)
t Y φ

t − λ3t (1− τt)(Uc,t + Ucc,tYt)− λ4t τt

− βσλ5t
1 + ρQt+1

πt+1
C−σ
t+1C

σ−1
t + σλ5t−1

1 + ρQt
πt

Cσt−1C
−σ−1
t = 0

πt : λ1t
1 + ϵφ

1− ϵ
p(πt)

1+ϵφ
1−ϵ

−1p′(πt)− λ2t−1θϵ(1 + φ)Ktπ
ϵ(1+φ)−1
t − λ3t−1θ(ϵ− 1)Jtπ

ϵ−2
t

− λ4t (1 + ρQMt )bt−1π
−2
t + λ5t−1

Uc,t
Uc,t−1

(1 + ρQMt )π−2
t

− λ6t [(1− θ)
ϵ(1 + φ)

ϵ− 1
p(πt)

1+ϵφ
ϵ−1 p′(πt) + θϵ(1 + φ)∆t−1π

ϵ(1+φ)−1
t ] = 0

∆t : U∆,t + λ6t − Etλ
6
t+1βθπ

ϵ(1+φ)
t+1 = 0

Kt : − λ1t
ϵ

ϵ− 1

1

Jt
+ λ2t − λ2t−1θπ

ϵ(1+φ)
t = 0

Jt : λ1t
ϵ

ϵ− 1

Kt

J2
t

+ λ3t − λ3t−1θπ
ϵ−1
t = 0

τt : λ3tUc,t − λ4t = 0

bt : λ4t − Etλ
4
t+1

Uc,t
Uc,t+1

= 0

QMt : λ4t (ρ
bt−1

πt
− bt) + λ5t − λ5t−1

ρ

πt

Uc,t
Uc,t−1

= 0

If we redefine λ̃1t =
λ1t
Jt
, λ̃2t = λ2t , λ̃

3
t = λ3t , λ̃

4
t =

λ4t
Uc,t

, λ̃5t =
λ5t

Uc,tbt
, λ̃6t = λ6t , then the first-order

conditions can be simplified as
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Yt : UY,t − λ̃2t (φ+ 1)A
−(φ+1)
t Y φ

t − λ̃3t (1− τt)(Uc,t + Ucc,tYt)− λ̃4t τtUc,t

− βσλ̃5t
(1 + ρQt+1)bt

πt+1
C−σ
t+1C

−1
t + σλ̃5t−1

(1 + ρQt)bt−1

πt
C−σ−1
t = 0 (B.7)

πt : λ̃1tJt
1 + ϵφ

1− ϵ
p(πt)

1+ϵφ
1−ϵ

−1p′(πt)− λ̃2t−1θϵ(1 + φ)Ktπ
ϵ(1+φ)−1
t − λ̃3t−1θ(ϵ− 1)Jtπ

ϵ−2
t

− λ̃4tUc,t(1 + ρQMt )bt−1π
−2
t + λ̃5t−1Uc,t(1 + ρQMt )bt−1π

−2
t

− λ̃6t [(1− θ)
ϵ(1 + φ)

ϵ− 1
p(πt)

1+ϵφ
ϵ−1 p′(πt) + θϵ(1 + φ)∆t−1π

ϵ(1+φ)−1
t ] = 0 (B.8)

∆t : U∆,t + λ̃6t − Etλ̃
6
t+1βθπ

ϵ(1+φ)
t+1 = 0 (B.9)

Kt : − ϵ

ϵ− 1
λ̃1t + λ̃2t − λ̃2t−1θπ

ϵ(1+φ)
t = 0 (B.10)

Jt : λ̃1t + λ̃3t − λ̃3t−1θπ
ϵ−1
t = 0 (B.11)

τt : λ̃3t − λ̃4t = 0 (B.12)

bt : λ̃4t − Etλ̃
4
t+1 = 0 (B.13)

QMt : λ̃4t (ρ
bt−1

πt
− bt) + λ̃5t bt − λ̃5t−1ρ

bt−1

πt
= 0 (B.14)

where λ̃1t through λ̃6t are the Lagrange multipliers. Condition (B.13) implies that the evolution

of the Lagrange multiplier corresponding to the government budget λ̃4t obeys a martingale. Con-

dition (B.14) connects λ̃4t to the Lagrange multiplier corresponding to the maturity structure λ̃5t .

Conditions (B.10) – (B.12) relate λ̃4t to the Lagrange multiplier corresponding to the aggregate

supply relations λ̃1t , λ̃
2
t , λ̃

3
t . Conditions (B.7) and (B.9) implicitly determine the shadow price of

the each constraint. Notice that (B.9) determines the marginal utility loss from inflation, while

(B.7) determines the marginal utility loss from variations in output-gap.

B.1 Deterministic steady state Using the optimal allocation that appendix B describes, in

a steady state with zero net inflation, π̄ = 1, we have

∆̄ = 1,
K̄

J̄
=
ϵ− 1

ϵ
, Q̄s = β

b̄

S̄
=

1− βρ

1− β

The associated steady-state price of long-term bond is given by

Q̄M =
β

1− βρ

which is increasing in average maturity ρ. The intuition is very straightforward, long-term debt

yields more coupon payments and therefore demands higher price.
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The steady-state government budget constraint implies

τ̄ − sg − sz =
(
β−1 − 1

)
sb

where sb ≡ Q̄M B̄/Ȳ is the steady-state debt to GDP ratio, sg ≡ Ḡ/Ȳ is the steady state government

purchases to GDP ratio, sz ≡ Z̄/Ȳ is the steady-state government transfers to GDP ratio.

Steady-state Lagrangian multipliers satisfy

¯̃
λ1 = (θ − 1)

¯̃
λ3 (B.15)

¯̃
λ2 =

ϵ

1− ϵ
¯̃
λ3 (B.16)

¯̃
λ3 =

¯̃
λ4 (B.17)

¯̃
λ5 =

¯̃
λ4 (B.18)

(1− βθ)
¯̃
λ6 = −U∆(Ȳ , 1) (B.19)

[
ϵ(φ+ 1)

1− ϵ
Ȳ φ + Ūc + (1− τ̄)ŪccȲ − (1− β)σ

1− βρ

sb
sc
Ūc]

¯̃
λ4 = UY (Ȳ , 1) (B.20)

Note that
¯̃
λ4 and

¯̃
λ6 can be solved from (B.19) and (B.20), and at steady state the other

multipliers are proportional to
¯̃
λ4. At steady state, the Lagrange multiplier associated with gov-

ernment budget therefore completely summarizes the distortions from output; the price dispersion

summarizes the distortions from inflation.

C Second-Order Approximation to Utility

The life-time welfare of household is defined by

U0 = E0

∞∑
t=0

βtU(Yt,∆t, ξt) (C.1)

where

U(Yt,∆t, ξt) =
(Yt −Gt)

1−σ

1− σ
−

( YtAt
)1+φ

1 + φ
∆t

= u(Yt, Gt)− v(Yt,∆t, At) (C.2)

We use a second-order Taylor expansion for a variable Xt:

Xt/X̄ = elnXt/X̄ = eX̂t = 1 + X̂t +
1

2
X̂2
t (C.3)
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and

X̃t = Xt − X̄ = X̄(X̂t +
1

2
X̂2
t ) (C.4)

The derivation of second-order approximation closely follows Benigno and Woodford (2004).

The first term in (C.2) can be approximated to second order as

u(Yt, Gt)− ū = ūY Ỹt + ūGG̃t + ūY GỸtG̃t +
1

2
ūY Y Ỹt

2
+

1

2
ūGGG̃t

2
+O(∥ξt∥3)

= ūY Ȳ (Ŷt +
1

2
Ŷt

2
) + ūGG̃t + ūY GȲ ḠŶtĜt +

1

2
ūY Y Ȳ

2Ŷt
2
+

1

2
ūGGG̃t

2
+O(∥ξt∥3)

= ūY Ȳ (Ŷt +
1

2
Ŷt

2
) + ūY GȲ ḠŶtĜt +

1

2
ūY Y Ȳ

2Ŷt
2
+O(∥ξt∥3) + t.i.p.

= ūY Ȳ [Ŷt +
1

2
(1 +

ūY Y
ūY

Ȳ )Ŷt
2 − ūY Y

ūY
ḠĜtŶt] +O(∥ξt∥3) + t.i.p.

= ūY Ȳ [Ŷt +
1

2
(1− s−1

c σ)Ŷt
2
+ sgsc

−1σĜtŶt] +O(∥ξt∥3) + t.i.p. (C.5)

“t.i.p.” represents the terms that are independent of policy. The second term in (C.2) can be

approximated by

v(Yt,∆t, At)− v̄ =v̄Y Ỹt + v̄AÃt + v̄∆∆̃t + v̄Y AỸtÃt + v̄Y∆Ỹt∆̃t + v̄∆A∆̃tÃt

+
1

2
v̄Y Y Ỹt

2
+

1

2
v̄AAÃ

2
t +

1

2
v̄∆∆∆̃

2
t +O(∥ξt∥3)

=v̄Y Ỹt + v̄∆∆̃t + v̄Y AỸtÃt + v̄Y∆Ỹt∆̃t + v̄∆A∆̃tÃt

+
1

2
v̄Y Y Ỹt

2
+

1

2
v̄∆∆∆̃

2
t +O(∥ξt∥3) + t.i.p.

=v̄Y Ȳ (Ŷt +
1

2
Ŷt

2
) + v̄∆∆̃t + v̄Y AȲ ŶtÃt + v̄Y∆Ȳ Ŷt∆̃t + v̄∆A∆̃tÃt

+
1

2
v̄Y Y Ȳ

2Ŷt
2
+

1

2
v̄∆∆∆̃

2
t +O(∥ξt∥3) + t.i.p.

=v̄Y Ȳ [Ŷt +
1

2
(1 +

v̄Y Y Ȳ

v̄Y
)Ŷt

2
+

v̄∆
v̄Y Ȳ

∆̃t +
v̄Y∆

v̄Y
∆̃tŶt +

v̄Y A
v̄Y

ÃtŶt +
v̄∆A
v̄Y Ȳ

∆̃tÃt +
1

2

v̄∆∆

v̄Y Ȳ
∆̃2
t ]

+O(∥ξt∥3) + t.i.p.

=v̄Y Ȳ [Ŷt +
1

2
(1 + φ)Ŷt

2
+

1

1 + φ
∆̃t + ∆̃tŶt − (1 + φ)ŶtÃt − ∆̃tÃt] +O(∥ξt∥3) + t.i.p.

(C.6)

From Benigno and Woodford (2004) we know that a second order approximation to (B.6) yields

∆̃t = θ∆̃t−1 +
θϵ

1− θ
(1 + φ)(1 + ϵφ)

π̂2t
2

+O(∥ξt∥3) + t.i.p. (C.7)

which implies that ∆̃t = O(π2t ).
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Therefore (C.6) can be simplified as

v(Yt,∆t, At)− v̄ = v̄Y Ȳ [Ŷt +
1

2
(1 + φ)Ŷt

2
+

1

1 + φ
∆̃t − (1 + φ)ŶtÂt] +O(∥ξt∥3) + t.i.p. (C.8)

Combine (C.5) and (C.8) and apply the relation v̄Y = (1−Φ)ūY , we approximate the life-time

utility (C.1) as

U0 − Ū0 =ūY Ȳ E0

∞∑
t=0

βt{ΦŶt +
1

2
[(1− σ

sc
)− (1− Φ)(1 + φ)]Ŷ 2

t + [sgsc
−1σĜt + (1− Φ)(1 + φ)Ât]Ŷt −

1− Φ

1 + φ
∆̂t}

+O(∥ξt∥3) + t.i.p. (C.9)

From Benigno and Woodford (2004) we observe

E0

∞∑
t=0

βt∆̂t =
θϵ

(1− θ)(1− βθ)
(1 + φ)(1 + ϵφ)

∞∑
t=0

βt
π̂2t
2

(C.10)

Therefore, the second-order approximation to the life-time utility (C.1) can be further expressed

as

U0 − Ū0 = ūY Ȳ E0

∞∑
t=0

βt{AyŶt +
1

2
AyyŶ

2
t +A′

ξ ξ̂tŶt −
Aπ
2
π̂2t }+O(∥ξt∥3) + t.i.p. (C.11)

where

Ay = Φ

Ayy = (1− σsc
−1)− (1− Φ)(1 + φ)

A′
ξ ξ̂t = σsc

−1sgĜt + (1− Φ)(1 + φ)Ât

Aπ = (1− Φ)
θϵ(1 + ϵφ)

(1− θ)(1− βθ)

Φ = 1 − (1 − τ) ϵ−1
ϵ measures the inefficiency of steady state of output. sc = C̄

Ȳ
is steady state

consumption to GDP ratio; sg =
Ḡ
Ȳ

is steady state government spending to GDP ratio.

D Second-Order Approximation to Government’s IEC

Recall the government budget constraint

QMt b
M
t + St = (1 + ρQMt )

bMt−1

πt
(D.1)
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and no-arbitrage condition

QMt = βEt
Uc,t+1

Uc,t

1

πt+1
(1 + ρQMt+1) (D.2)

Define

Wt = Uc,t(1 + ρQMt )
bMt−1

πt
(D.3)

By applying (D.2) and (D.3), (D.1) can be rewritten as

Wt = Uc,tSt + βEtWt+1 (D.4)

and

Wt = Et

∞∑
k=0

Uc,t+kSt+k (D.5)

A second-order approximation to Uc,tSt yields

Uc,tSt = ŪcS̄ + ŪccS̄C̃t + ŪcS̃t +
1

2
S̄ŪcccC̃

2
t + ŪccS̃tC̃t (D.6)

We express C̃t in terms of Ŷt and Ĝt through the second order approximation to the identity

Ct = Yt −Gt,

C̃t = Ȳ (Ŷt +
1

2
Ŷ 2
t )− Ḡ(Ĝt +

1

2
Ĝ2
t ) (D.7)

Since St = τtYt −Gt − Zt, a second-order approximation to the primary surplus can be written as

S̃t = τ̄ Ȳ (τ̂t + Ŷt) +
1

2
τ̄ Ȳ (τ̂2t + Ŷ 2

t ) + τ̄ Ȳ Ŷtτ̂t − Ḡ(Ĝt +
1

2
Ĝ2
t )− Z̄(Ẑt +

1

2
Ẑ2
t ) (D.8)
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Substituting (D.7) and (D.8) into (D.6), we obtain

Uc,tSt − ŪcS̄ =ŪccS̄[Ȳ (Ŷt +
1

2
Ŷ 2
t )− Ḡ(Ĝt +

1

2
Ĝ2
t )]

+ Ūc[τ̄ Ȳ (τ̂t + Ŷt) +
1

2
τ̄ Ȳ (τ̂2t + Ŷ 2

t ) + τ̄ Ȳ Ŷtτ̂t − Ḡ(Ĝt +
1

2
Ĝ2
t )− Z̄(Ẑt +

1

2
Ẑ2
t )]

+
1

2
S̄Ūccc(Ȳ

2Ŷ 2
t + Ḡ2Ĝ2

t − 2Ȳ ḠŶtĜt)

+ Ūcc[τ̄ Ȳ
2Ŷ 2
t + τ̄ Ȳ 2Ŷtτ̂t − (τ̄ + 1)Ȳ ḠŶtĜt − Ȳ Z̄ŶtẐt − τ̄ Ȳ Ḡτ̂tĜt + Ḡ2Ĝ2

t + ḠZ̄ĜtẐt]

+O(∥ξt∥3)

= ŪcS̄[−σs−1
c (Ŷt +

1

2
Ŷ 2
t ) + σs−1

c sg(Ĝt +
1

2
Ĝ2
t ) +

τ̄ Ȳ

S̄
(τ̂t + Ŷt) +

1

2

τ̄ Ȳ

S̄
(τ̂2t + Ŷ 2

t ) +
τ̄ Ȳ

S̄
Ŷtτ̂t −

Ḡ

S̄
Ĝt −

Z̄

S̄
Ẑt

+
1

2
σ(1 + σ)(s−2

c Ŷ 2
t + s2gs

−2
c Ĝ2

t − 2sgs
−2
c ŶtĜt)

− σs−1
c

τ̄ Ȳ

S̄
(Ŷ 2
t + Ŷtτ̂t) + σs−1

c sg(
τ̄ Ȳ

S̄
+
Ȳ

S̄
)ŶtĜt + σs−1

c sz
Ȳ

S̄
ŶtẐt + σs−1

c sg
τ̄ Ȳ

S̄
τ̂tĜt]

+O(∥ξt∥3)

= ŪcS̄{(−
σ

sc
+
τ̄ Ȳ

S̄
)Ŷt +

τ̄ Ȳ

S̄
τ̂t +

1

2

τ̄ Ȳ

S̄
τ̂2t +

1

2
[
τ̄ Ȳ

S̄
(1− 2σ

sc
)− σ

sc
+
σ2

s2c
+
σ

s2c
]Ŷ 2
t +

τ̄ Ȳ

S̄
(1− σs−1

c )Ŷtτ̂t

+ σ
sg
sc

τ̄ Ȳ

S̄
Ĝtτ̂t + σ

sz
sc

Ȳ

S̄
ŶtẐt − σ

sg
sc
(
σ + 1

sc
− τ̄ Ȳ

S̄
− Ȳ

S̄
)ŶtĜt −

Z̄

S̄
Ẑt + (σs−1

c sg −
Ḡ

S̄
)Ĝt}+O(∥ξt∥3)

(D.9)

Therefore, by substituting (D.9) into (D.5), we express the second-order approximation to govern-

ment lEC as

W0 − W̄

W̄
=(1− β)E0

∞∑
t=0

βt[{ByŶt +Bτ τ̂t +Byτ Ŷtτ̂t +
1

2
ByyŶ

2
t +

1

2
Bττ τ̂

2
t +B′

ξy ξ̂tŶt +B′
ξτ ξ̂tτ̂t +Bξ

′ξ̂t}

+O(∥ξt∥3) + t.i.p. (D.10)

where

By = − σ

sc
+
τ̄ Ȳ

S̄
Bτ =

τ̄ Ȳ

S̄
Bξ

′ξ̂t = −sz
sd
Ẑt + (σ

sc
sg

− sg
sd

)Ĝt

Byτ =
τ̄ Ȳ

S̄
(1− σs−1

c ) Bττ =
τ̄ Ȳ

S̄
Byy =

τ̄ Ȳ

S̄
(1− 2σ

sc
)− σ

sc
+
σ2

s2c
+
σ

s2c

B′
ξy ξ̂t = σ

sz
sc

1

sd
Ẑt − σ

sg
sc
(
σ + 1

sc
− τ̄ Ȳ

S̄
− 1

sd
)Ĝt B′

ξτ ξ̂t = σ
sg
sc

τ̄ Ȳ

S̄
Ĝt

sz = Z̄
Ȳ

is steady state government transfer payment to GDP ratio; sd = S̄
Ȳ

is steady state

surplus to GDP ratio.
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E Second-Order Approximation to Aggregate Supply Relation

The aggregate supply relation is defined by the equations

Jt[
1− θπϵ−1

t

1− θ
]
1+ϵφ
1−ϵ =

ϵ

ϵ− 1
Kt (E.1)

Kt = µWt (
Yt
At

)φ+1 + βθEtKt+1π
ϵ(1+φ)
t+1 (E.2)

Jt = (1− τt)Uc,tYt + βθEtJt+1π
ϵ−1
t+1 (E.3)

A second-order approximation to (E.1) can be written as

ϵ

ϵ− 1
K̃t − J̃t = J̄

θ

1− θ
(1 + ϵφ){π̃t +

1

2
[
θ

1− θ
ϵ(φ+ 1) + (ϵ− 2)]π̃2t }+

θ

1− θ
(1 + ϵφ)J̃tπ̃t +O(∥ξt∥3)

(E.4)

A second-order approximation to (E.2) can be written as

K̃t =βθEtK̃t+1 + βθϵ(1 + φ)K̄{Etπ̃t+1 +
1

2
[ϵ(1 + φ)− 1]Etπ̃

2
t+1}+ βθϵ(1 + φ)K̃t+1π̃t+1

+ µ̄W (1 + φ)Ȳ φỸt − µ̄W (1 + φ)2Ȳ φỸtÃt + (φ+ 1)Ȳ φµ̃Wt Ỹt +
1

2
µ̄Wφ(1 + φ)Ȳ φ−1Ỹ 2

t

− µ̄W (φ+ 1)Ȳ φ+1Ãt + Ȳ φ+1µ̃Wt +O(∥ξt∥3) + t.i.p. (E.5)

A second-order approximation to (E.3) can be written as

J̃t =βθEtJ̃t+1 + βθ(ϵ− 1)J̄ [Etπ̃t+1 +
1

2
(ϵ− 2)Etπ̃

2
t+1] + βθ(ϵ− 1)J̃t+1π̃t+1

+ (1− τ̄)(Ūc + ŪccȲ )Ỹt − ŪcȲ τ̃t +
1

2
(1− τ̄)(2Ūcc + ŪcccȲ )Ỹ 2

t − (Ūc + ŪccȲ )Ỹtτ̃t

+ ŪccȲ τ̃tG̃t − (1− τ̄)(Ūcc + ŪcccȲ )ỸtG̃t − (1− τ̄)Ȳ ŪccG̃t +O(∥ξt∥3) + t.i.p. (E.6)

Therefore, ϵ
ϵ−1(E.5)-(E.6) can be expressed as

ϵ

ϵ− 1
K̃t − J̃t =βθEt(

ϵ

ϵ− 1
K̃t+1 − J̃t+1)

+
ϵ

ϵ− 1
βθϵ(1 + φ)K̄{Etπ̃t+1 +

1

2
[ϵ(1 + φ)− 1]Etπ̃

2
t+1} − βθ(ϵ− 1)J̄ [Etπ̃t+1 +

1

2
(ϵ− 2)Etπ̃

2
t+1]

+
ϵ

ϵ− 1
βθϵ(1 + φ)K̃t+1π̃t+1 − βθ(ϵ− 1)J̃t+1π̃t+1

+
ϵ

ϵ− 1
[µ̄W (1 + φ)Ȳ φỸt − µ̄W (1 + φ)2Ȳ φỸtÃt + (φ+ 1)Ȳ φµ̃Wt Ỹt +

1

2
µ̄Wφ(1 + φ)Ȳ φ−1Ỹ 2

t

− µ̄W (φ+ 1)Ȳ φ+1Ãt + Ȳ φ+1µ̃Wt ]

−[(1− τ̄)(Ūc + ŪccȲ )Ỹt − ŪcȲ τ̃t +
1

2
(1− τ̄)(2Ūcc + ŪcccȲ )Ỹ 2

t − (Ūc + ŪccȲ )Ỹtτ̃t]

−[ŪccȲ τ̃tG̃t − (1− τ̄)(Ūcc + ŪcccȲ )ỸtG̃t − (1− τ̄)Ȳ ŪccG̃t] +O(∥ξt∥3) + t.i.p. (E.7)
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Then we plug (E.4) into (E.7) and obtain

J̄
θ

1− θ
(1 + ϵφ){π̃t +

1

2
[
θ

1− θ
ϵ(φ+ 1) + (ϵ− 2)]π̃2t }+

θ

1− θ
(1 + ϵφ)J̃tπ̃t

=βθJ̄
θ

1− θ
(1 + ϵφ){Etπ̃t+1 +

1

2
[
θ

1− θ
ϵ(φ+ 1) + (ϵ− 2)]Etπ̃

2
t+1}+ βθ

θ

1− θ
(1 + ϵφ)J̃t+1π̃t+1

+
ϵ

ϵ− 1
βθϵ(1 + φ)K̄{Etπ̃t+1 +

1

2
[ϵ(1 + φ)− 1]Etπ̃

2
t+1} − βθ(ϵ− 1)J̄ [Etπ̃t+1 +

1

2
(ϵ− 2)Etπ̃

2
t+1]

+ βθϵ(1 + φ)[J̃t+1π̃t+1 + J̄
θ

1− θ
(1 + ϵφ)π̃2t+1]− βθ(ϵ− 1)J̃t+1π̃t+1

+
ϵ

ϵ− 1
[µ̄W (1 + φ)Ȳ φỸt − µ̄W (1 + φ)2Ȳ φỸtÃt + (φ+ 1)Ȳ φµ̃Wt Ỹt +

1

2
µ̄Wφ(1 + φ)Ȳ φ−1Ỹ 2

t

− µ̄W (φ+ 1)Ȳ φ+1Ãt + Ȳ φ+1µ̃Wt ]

− [(1− τ̄)(Ūc + ŪccȲ )Ỹt − ŪcȲ τ̃t +
1

2
(1− τ̄)(2Ūcc + ŪcccȲ )Ỹ 2

t − (Ūc + ŪccȲ )Ỹtτ̃t]

− [ŪccȲ τ̃tG̃t − (1− τ̄)(Ūcc + ŪcccȲ )ỸtG̃t − (1− τ̄)Ȳ ŪccG̃t] +O(∥ξt∥3) + t.i.p. (E.8)

Note that at steady state we have the relations K̄
J̄
= ϵ−1

ϵ , (1− βθ)K̄ = Ȳ φ+1 and (1− βθ)J̄ =

(1− τ̄)ŪcȲ , therefore (E.8) can be simplified as

θ

1− θ
(1 + ϵφ)π̂t +

1

2

θ

1− θ
(1 + ϵφ)[

θ

1− θ
ϵ(φ+ 1) + (ϵ− 1)]π̂2t +

θ

1− θ
(1 + ϵφ)J̄−1Ĵtπ̂t

=
θ

1− θ
(1 + ϵφ)βEtπ̂t+1 +

1

2

θ

1− θ
(1 + ϵφ)β[

1

1− θ
ϵ(φ+ 1) + (ϵ− 1)]π̂2t+1 + β

θ

1− θ
(1 + ϵφ)J̄−1Ĵt+1π̂t+1

+ (1− βθ)[(1 + φ)Ŷt − (1 + φ)2ŶtÂt + (1 + φ)Ŷtµ̂
W
t +

1

2
(1 + φ)2Ŷ 2

t − (1 + φ)Ât + µ̂Wt ]

− (1− βθ){(1− σs−1
c )Ŷt − wτ τ̂t − wτ (1− σs−1

c )Ŷtτ̂t −
1

2
wτ τ̂

2
t +

1

2
[1− 3σs−1

c + σ(1 + σ)s−2
c ]Ŷ 2

t

− σ
sg
sc
wτ τ̂tĜt − [σ(1 + σ)s−2

c − σs−1
c ]sgŶtĜt + σ

sg
sc
Ĝt}+O(∥ξt∥3) + t.i.p. (E.9)

Define Vt = π̂t +
1
2 [

1
1−θ ϵ(φ + 1) + (ϵ − 1)]π̂2t + J̄−1Ĵtπ̂t, and substitue into (E.9), we obtain a

recursive relation

Vt =κ{CyŶt + Cτ τ̂t + Cyτ Ŷtτ̂t +
1

2
CyyŶ

2
t +

1

2
Cττ τ̂

2
t + C ′

ξy ξ̂tŶt + C ′
ξτ ξ̂tτ̂t +

Cπ
2
π2t + Cξ

′ξ̂t}}+ βEtVt+1

+O(∥ξt∥3) + t.i.p. (E.10)
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where

Cy = 1 Cτ = ψ Cπ =
ϵ(1 + φ)

κ

Cyτ = (1− σs−1
c )ψ Cττ = ψ Cyy = (2 + φ− σs−1

c ) + σ(s−1
c − s−2

c )(φ+ σs−1
c )−1

C ′
ξy ξ̂t =

σ2s−2
c + σs−2

c − σs−1
c

φ+ σs−1
c

sgĜt −
(1 + φ)2

φ+ σs−1
c
Ât +

1 + φ

φ+ σs−1
c
µ̂Wt C ′

ξτ ξ̂t = σsc
−1sgψĜt

Cξ
′ξ̂t = − φ+ 1

φ+ σs−1
c
Ât −

sg
sc

σ

φ+ σs−1
c
Ĝt

and

κ =
1− θ

θ

(1− βθ)(φ+ σs−1
c )

1 + ϵφ

wτ =
τ̄

1− τ̄

ψ =
wτ

φ+ σs−1
c

Integrate (E.10) forward from t = 0, we have

V0 =E0

∞∑
t=0

βtκ{CyŶt + Cτ τ̂t + Cyτ Ŷtτ̂t +
1

2
CyyŶ

2
t +

1

2
Cττ τ̂

2
t + C ′

ξy ξ̂tŶt + C ′
ξτ ξ̂tτ̂t +

Cπ
2
π̂2t + Cξ

′ξ̂t}

+O(∥ξt∥3) + t.i.p. (E.11)

F Quadratic Approximation to Objective Function

Now we use a linear combination of (D.10) and (E.11) to eliminate the linear term in the second

order approximation to the welfare measure. The coefficients µB, µC should satisfy

µBBy + µCCy = −Φ

µBBτ + µCCτ = 0

The solution is

µB =
Φwτ
Γ

µC = −Φ(1 + wg)(φ+ σs−1
c )

Γ

where wg =
Ḡ+Z̄
S̄

is steady-state government outlays to surplus ratio, and satisfies 1+wg =
τ̄ Ȳ
S̄
.

Γ = σs−1
c wτ + (1 + wg)(φ+ σs−1

c − wτ ).
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Therefore, we can finally express the objective function in the linear quadratic form of

(ūY Ȳ )−1(U0 − Ū0) + µB(1− β)−1W0 − W̄

W̄
+ µCκ

−1V0 = −E0

∞∑
t=0

βt[
1

2
qY (Ŷt − Ŷ e

t )
2 +

1

2
qππ̂

2
t ] +O(∥ξt∥3) + t.i.p.

(F.1)

with

qY = (1− Φ)(φ+ σs−1
c ) + Φ(φ+ σs−1

c )
(1 + wg)(1 + φ)

Γ
+ Φσs−1

c

(1 + wg)(1 + wτ )

Γ
− Φσs−2

c

(1 + wg + wτ )

Γ

qπ =
Φ(1 + wg)ϵ(1 + φ)(φ+ σs−1

c )

κΓ
+

(1− Φ)ϵ(φ+ σs−1
c )

κ

and Ŷ e
t denotes the efficient level of output, which is exogenous and depends on the vector of

exogenous shocks ξt,

Ŷ e
t =q−1

Y (A′
ξ ξ̂t + µBB

′
ξy ξ̂t + µCC

′
ξy ξ̂t)

=qAÂt + qGĜt + qZẐt + qW µ̂
W
t

where

qA = q−1
Y [(1− Φ)(1 + φ) +

Φ(1 + wg)(1 + φ)2

Γ
]

qG = q−1
Y [σ

sg
sc

− σ
sg
sc

Φwτ
Γ

(
σ + 1

sc
− 1

sd
) + σ

sg
sc

Φ(1 + wg)

Γ
(wτ + 1− σ + 1

sc
)]

qZ = q−1
Y σ

Φwτ
Γ

sz
sc

1

sd

qW = −q−1
Y σ

Φ(1 + wg)(1 + φ)

Γ

G U.S. Data

Unless otherwise noted, the following data are from the National Income and Product Accounts

Tables released by the Bureau of Economic Analysis. All NIPA data are nominal and in levels.

Consumption, C. Total personal consumption expenditures (Table 1.1.5, line 2).

Government spending, G. Federal government consumption expenditures and gross invest-

ment (Table 1.1.5, line 22).

GDP, Y . Y = C +G.

Total tax revenues, τY . Federal current tax receipts (Table 3.2, line 2) plus contributions

for government social insurance (Table 3.2, line 11) plus Federal income receipts on assets (Table

3.2, line 12).
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Total government transfers, Z. Federal current transfer payments (Table 3.2, line 22) minus

Federal current transfer receipts (Table 3.2, line 16) plus Federal capital transfers payments (Table

3.2, line 43) minus Federal capital transfer receipts (Table 3.2, line 39) plus Federal subsidies (Table

3.2, line 32).

Federal government debt, QMBM . Market value of privately held gross Federal debt,

Federal Reserve Bank of Dallas, http://www.dallasfed.org/research/econdata/govdebt.cfm.

Total factor productivity, A. Business sector total factor productivity, produced on 03-

May-2013 by John Fernald/Kuni Natsuki, http://www.frbsf.org/economic-research/total-factor-

productivity-tfp/. All published variables are log-differenced and annualized. To be consistent

with model with fixed capital, we compute dA = dY − (dhours+dLQ), where dhours and dLQ are

business sector hours and labor composition/quality actually used. Given dAt = 400 ∗ log(At) −
log(At−1), we compute the annualized level of TFP, normalizing A1947Q1 = 1.

We use data from 1948Q1 to 2013Q1 to calibrate the model to U.S. data. For steady states,

we use the sample means reported below. For the quarterly calibration, we multiply B/Y by

Variable Mean
G/Y 0.129
τ 0.240
B/Y 0.489

4. Lump-sum transfers as a share of GDP adjust to satisfy the steady state government budget

constraint.

To calibrate the exogenous processes, we apply a Hodrick and Prescott (1997) filter to time

series on Gt, τt, Zt, and At and estimate AR(1) processes using the cyclical components of the

filtered data, denoting those components by ĝt, τ̂t, ẑt, ât. Let the AR(1) be x̂t = ρxx̂t−1 + εxt with

standard error of estimate σε. Estimates appear below with standard errors in parentheses.

Variable, x ρx σε
ĝt 0.886 0.027

(0.029)
τ̂t 0.782 0.029

(0.038)
ẑt 0.549 0.045

(0.051)
ât 0.786 0.008

(0.038)
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